This paper introduces a novel speech enhancement (SE) approach based on a denoising diffusion probabilistic model (DDPM), termed Guided diffusion for speech enhancement (GDiffuSE). In contrast to conventional methods that directly map noisy speech to clean speech, our method employs a lightweight helper model to estimate the noise distribution, which is then incorporated into the diffusion denoising process via a guidance mechanism. This design improves robustness by enabling seamless adaptation to unseen noise types and by leveraging large-scale DDPMs originally trained for speech generation in the context of SE. We evaluate our approach on noisy signals obtained by adding noise samples from the BBC sound effects database to LibriSpeech utterances, showing consistent improvements over state-of-the-art baselines under mismatched noise conditions. Examples are available at our project webpage.


翻译:本文提出了一种基于去噪扩散概率模型(DDPM)的新型语音增强(SE)方法,称为引导扩散语音增强(GDiffuSE)。与直接将带噪语音映射到纯净语音的传统方法不同,本方法采用轻量级辅助模型来估计噪声分布,随后通过引导机制将其整合到扩散去噪过程中。该设计通过实现对未知噪声类型的无缝适应,并利用原本为语音生成任务训练的大规模DDPM模型进行语音增强,从而提升了系统的鲁棒性。我们在LibriSpeech语音数据叠加BBC音效库噪声样本构成的带噪信号上评估了本方法,结果表明在噪声类型不匹配的条件下,本方法相较于现有先进基线模型取得了持续的性能提升。示例可在我们的项目网页中获取。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
13+阅读 · 2022年4月12日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员