The flourish of web-based services gave birth to the research area \textit{services computing}, a rapidly-expanding academic community since nearly 20 years ago. Consensus has been reached on a set of representative research problems in services computing, such as service selection, service composition, service recommendation, and service quality prediction. An obvious fact is that most services keep constant changes to timely adapt to changes of external business/technical environment and changes of internal development strategies. However, traditional services computing research does not consider such changes sufficiently. Many works regard services as \textit{static} entities; this leads to the situation that some proposed models/algorithms do not work in real world. Sensing various types of service changes is of great significance to the practicability and rationality of services computing research. In this paper, a new research problem \textit{External Service Sensing} (ESS) is defined to cope with various changes in services, and a research framework of ESS is presented to elaborate the scope and boundary of ESS. This framework is composed of four orthogonal dimensions: sensing objects, sensing contents, sensing channels, and sensing techniques. Each concrete ESS problem is defined by combining different values in these dimensions, and existing research work related to service changes can be well adapted to this framework. Real-world case studies demonstrate the soundness of ESS and its framework. Finally, some challenges and opportunities in ESS research are listed for researchers in the services computing community. To the best of our knowledge, this is the first time to systematically define service change-related research as a standard services computing problem, and thus broadening the research scope of services computing.


翻译:网基服务的蓬勃发展使得研究领域 \ textit{services commerge}成为了研究领域 \ textit{services computer},这是近20年前迅速扩大的学术界。对于服务计算中的一系列具有代表性的研究问题,如服务选择、服务构成、服务建议和服务质量预测等,已经达成了共识。一个明显的事实是,大多数服务保持不断的变化,以便及时适应外部商业/技术环境的变化和内部发展战略的变化。然而,传统服务计算研究没有充分考虑到这种变化。许多工作将服务视为扩大ESS相关实体;这导致出现这样一种情况:一些拟议的模型/课程在现实世界中并不系统化地发挥作用。对服务计算中的各种类型的服务变化,对于服务的实用性和合理性和合理性具有重大意义。在本文中,一个新的研究问题 \ textitilitit{Exterrial Servication} (ESSESE) 是一个研究框架,这个框架由四个或多层次的层面组成:感测对象、感测内容、感测社区特性、感测渠道、感测服务范围,因此将研究范围和感测到现有研究范围,每一个具体的研究范围 都能够展示这些研究机会。

0
下载
关闭预览

相关内容

最新《自监督表示学习》报告,70页ppt
专知会员服务
85+阅读 · 2020年12月22日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
计算机 | ISMAR 2019等国际会议信息8条
Call4Papers
3+阅读 · 2019年3月5日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
1+阅读 · 2021年8月18日
A Survey on Edge Intelligence
Arxiv
52+阅读 · 2020年3月26日
Arxiv
35+阅读 · 2019年11月7日
VIP会员
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
计算机 | ISMAR 2019等国际会议信息8条
Call4Papers
3+阅读 · 2019年3月5日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员