NASA JPL scientists working on the micro x-ray fluorescence (microXRF) spectroscopy data collected from Mars surface perform data analysis to look for signs of past microbial life on Mars. Their data analysis workflow mainly involves identifying mineral compounds through the element abundance in spatially distributed data points. Working with the NASA JPL team, we identified pain points and needs to further develop their existing data visualization and analysis tool. Specifically, the team desired improvements for the process of creating and interpreting mineral composition groups. To address this problem, we developed an interactive tool that enables scientists to (1) cluster the data using either manual lasso-tool selection or through various machine learning clustering algorithms, and (2) compare the clusters and individual data points to make informed decisions about mineral compositions. Our preliminary tool supports a hybrid data analysis workflow where the user can manually refine the machine-generated clusters.
翻译:从事从火星表面收集的微X射线荧光谱学数据工作的美国航天局JPL科学家们进行了数据分析,以寻找火星过去微生物生命的迹象。他们的数据分析工作流程主要涉及通过空间分布数据点的元素丰度来识别矿物化合物。我们与美国航天局JPL小组合作,确定了疼痛点,需要进一步发展其现有的数据可视化和分析工具。具体地说,该小组希望改进矿物组成组的创建和解释过程。为了解决这个问题,我们开发了一个互动工具,使科学家们能够(1) 利用手动拉索工具选择或通过各种机器学习组合算法对数据进行分组,(2) 比较集群和单个数据点,以便就矿物组成作出知情的决定。我们的初步工具支持一种混合数据分析工作流程,用户可以在那里手动地改进机器生成的集群。