Product description generation is a challenging and under-explored task. Most such work takes a set of product attributes as inputs then generates a description from scratch in a single pass. However, this widespread paradigm might be limited when facing the dynamic wishes of users on constraining the description, such as deleting or adding the content of a user-specified attribute based on the previous version. To address this challenge, we explore a new draft-command-edit manner in description generation, leading to the proposed new task-controllable text editing in E-commerce. More specifically, we allow systems to receive a command (deleting or adding) from the user and then generate a description by flexibly modifying the content based on the previous version. It is easier and more practical to meet the new needs by modifying previous versions than generating from scratch. Furthermore, we design a data augmentation method to remedy the low resource challenge in this task, which contains a model-based and a rule-based strategy to imitate the edit by humans. To accompany this new task, we present a human-written draft-command-edit dataset called E-cEdits and a new metric "Attribute Edit". Our experimental results show that using the new data augmentation method outperforms baselines to a greater extent in both automatic and human evaluations.
翻译:产品描述生成是一项具有挑战性和探索不足的任务。 大部分此类工作都包含一系列产品属性, 因为输入后会在单一版本中从零开始生成描述。 但是, 当面对用户对限制描述的动态愿望时, 诸如删除或添加基于上一个版本的用户指定属性的内容等动态愿望时, 这种广泛的范式可能会受到限制。 为了应对这一挑战, 我们在描述生成过程中探索新的命令编辑草案方式, 导致在电子商务中进行拟议的新的任务控制文本编辑。 更具体地说, 我们允许系统从用户那里接收命令( 删除或添加), 然后通过灵活修改基于上一个版本的内容来生成描述。 如果面对用户对前一个版本进行修改而不是从零开始生成的动态愿望, 满足新的需求会更容易和更加实际。 此外, 我们设计了一种数据增强方法, 来补救这项任务中低资源挑战, 其中包括一种基于模型和基于规则的战略, 以模拟人类的编辑。 为了配合这项新的任务, 我们提出了一个由人编写的指令编辑的草稿- 编辑数据集集, 称为E- 编辑或添加一个以前版本为基础对内容进行灵活修改, 然后用新的测量和新的测量“ ” Adretradistration abregistrational laviewdal develviewdal ” laviewdaldaldaldaldaldaldald