This paper presents a novel approach that supports natural language voice instructions to guide deep reinforcement learning (DRL) algorithms when training self-driving cars. DRL methods are popular approaches for autonomous vehicle (AV) agents. However, most existing methods are sample- and time-inefficient and lack a natural communication channel with the human expert. In this paper, how new human drivers learn from human coaches motivates us to study new ways of human-in-the-loop learning and a more natural and approachable training interface for the agents. We propose incorporating natural language voice instructions (NLI) in model-based deep reinforcement learning to train self-driving cars. We evaluate the proposed method together with a few state-of-the-art DRL methods in the CARLA simulator. The results show that NLI can help ease the training process and significantly boost the agents' learning speed.
翻译:本文介绍了一种新颖的方法,它支持自然语言语音指导,以指导在培训自行驾驶汽车时的深度强化学习(DRL)算法。DRL方法对自主驾驶车辆(AV)代理商来说是流行的方法。然而,大多数现有方法都是抽样和时间效率低的,缺乏与人类专家的自然沟通渠道。在本文中,新的人类驾驶员如何从人类教练中学习,激励我们学习新的人际流动学习方式,为代理商提供更自然和可接近的培训界面。我们建议将自然语言语音指导(NLI)纳入基于模型的深度强化学习中,以培训自行驾驶汽车。我们与CARLA模拟器中少数最先进的DL方法一起评估拟议方法。结果显示,NLI可以帮助简化培训过程,大大提升代理商的学习速度。