In multiple-input multiple-output (MIMO) wireless communications systems, neural networks have been employed for channel decoding, detection, channel estimation, and resource management. In this paper, we look at how to use a variational autoencoder to find a precoding matrix with a high Spectral Efficiency (SE). To collect optimal precoding matrices, an optimization approach is used. Our objective is to create a less time-consuming algorithm with minimum quality degradation. To build precoding matrices, we employed two forms of variational autoencoders: conventional variational autoencoders (VAE) and conditional variational autoencoders (CVAE). Both methods may be used to study a wide range of optimal precoding matrices. To the best of our knowledge, the development of precoding matrices for the spectral efficiency objective function (SE) utilising VAE and CVAE methods is being published for the first time.
翻译:在多投入多输出无线通信系统中,神经网络被用于频道解码、检测、频道估计和资源管理。在本文中,我们研究了如何使用变式自动编码器寻找具有高光谱效率的预编码矩阵。为了收集最佳预编码矩阵,采用了优化方法。我们的目标是创建一种使用最小质量降解的更慢时间消耗算法。为了建立预编码矩阵,我们采用了两种变式自动编码器:传统的变式自动编码器(VAE)和有条件的变式自动编码器(CVAE)。两种方法都可以用于研究广泛的最佳预编码矩阵。根据我们的知识,正在首次公布光谱效率目标函数(SE)使用VAE和CVAE方法的预编码矩阵开发。