We investigate the game theoretic equilibrium points of a status updating system with an adversary that jams the updates in the downlink. We consider the system models with and without diversity. The adversary can jam up to $\alpha$ proportion of the entire communication window. In the model without diversity, in each time slot, the base station schedules a user from $N$ users according to a stationary distribution. The adversary blocks (jams) $\alpha T$ time slots of its choosing out of the total $T$ time slots. For this system, we show that a Nash equilibrium does not exist, however, a Stackelberg equilibrium exists when the scheduling algorithm of the base station acts as the leader and the adversary acts as the follower. In the model with diversity, in each time slot, the base station schedules a user from $N$ users and chooses a sub-carrier from $N_{sub}$ sub-carriers to transmit update packets to the scheduled user according to a stationary distribution. The adversary blocks $\alpha T$ time slots of its choosing out of $T$ time slots at the sub-carriers of its choosing. For this system, we show that a Nash equilibrium exists and identify the Nash equilibrium.
翻译:我们调查了状态更新系统的游戏理论平衡点, 对手会干扰下行链路的更新。 我们考虑系统模型的多样性和没有多样性的系统模型。 对手可以将整个通信窗口的比重加到1美元。 在没有多样性的模型中, 每个时段, 基站会根据固定分布安排用户从1美元用户到1美元用户; 敌区块( jams) $\ alpha T$ 其选择的时间空档, 从总共$T$ 时间槽中选择其选择的分包。 对于这个系统, 我们显示纳什平衡并不存在。 但是, 当基站的排程算法作为领导者, 而敌机作为追随者充当追随者时, 斯塔克尔贝格的平衡就不存在了。 在模型中, 在每一个时段, 基站会根据固定分布安排用户从$N ⁇ subsub} 选择一个子容器, 向预定的用户传送更新的包。 敌区块 $\\ alpha Toff 时间槽选择的 $T$ 时间槽时段, 我们选择了这个平衡系统 。