项目名称: 纳米尺度下机械力控制多肽分子有序自组装的方法和机制研究

项目编号: No.11274334

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 数理科学和化学

项目作者: 张益

作者单位: 中国科学院上海应用物理研究所

项目金额: 80万元

中文摘要: 本项目拟利用原子力显微镜纳米操纵技术,探讨机械力在纳米尺度上控制多肽分子有序自组装的方法及其物理、化学机制。本项目的实现,将有可能在固体表面形成有序的多肽纳米结构,控制多肽纳米纤维在表面上的纳米级精度的定位、定向生长,同时实现多肽纳米纤维缺陷的实时修复,还将生成由两种或者多种多肽分子组成的、不同组分的多肽在纤维上的位置可控的"杂合"纤维。进一步研究这些自组装结构的形成机制,为我们了解多肽分子之间及其与固体表面的相互作用,正确理解机械力等物理刺激如何影响多肽分子的聚集行为提供帮助,有重要的学术价值。申请人在纳米操纵和多肽分子自组装领域的研究积累将为本项目的顺利进行提供坚实的基础。

中文关键词: 多肽;自组装;原子力显微镜;机械刺激;

英文摘要: The current project intends to develop the methodology as well as to investigate the inherent mechanism of mechanical force-induced peptide self-assembly process on solid-liquid interfaces on the nanometer scale. On one hand, the applicant would develop methods for construction of ordered peptide nanostructures on solid surface based on atomic force microscope (AFM) nanomanipulation. The mechanical force applied by the AFM tips will be used as physical stimuli to induce the formation of nucleation seeds that would extend to longer peptide fibrils at designated locations and directions. In addition, AFM-based nanomanipulation method would be used to repair the defects on preformed peptide fibrils. Moreover, by inserting peptide monomers into the gaps on a preformed fibrils generated by mechanical force, it is possible to fabricate hybrid fibrils composed of different kinds of peptide monomers. On the other hand, the applicant expects to understand the roles of the mechanical force in the peptide self-assembly process. Studies on the interactions between the peptide molecules, the solid substrates, and AFM tips will be carried out. The applicant believe that successful completion of the current project would lead to a general approach for fabricating ordered peptide nanostructures on solid substrates, and improv

英文关键词: peptide;self-assembly;atomic force microscope;mechenical stimuli;

成为VIP会员查看完整内容
0

相关内容

Nat. Mach. Intell. | 分子表征的几何深度学习
专知会员服务
24+阅读 · 2021年12月26日
中国AI+材料科学产业应用研究报告,41页pdf
专知会员服务
55+阅读 · 2021年12月6日
专知会员服务
28+阅读 · 2021年8月27日
2021年全球量子信息发展报告, 32页pdf
专知会员服务
78+阅读 · 2021年5月14日
专知会员服务
24+阅读 · 2021年4月21日
专知会员服务
26+阅读 · 2021年4月2日
机器学习在材料科学中的应用综述,21页pdf
专知会员服务
48+阅读 · 2019年9月24日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
A Sheaf-Theoretic Construction of Shape Space
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月18日
Arxiv
46+阅读 · 2021年10月4日
Arxiv
16+阅读 · 2020年5月20日
Object Detection in 20 Years: A Survey
Arxiv
48+阅读 · 2019年5月13日
小贴士
相关VIP内容
相关基金
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
微信扫码咨询专知VIP会员