项目名称: 超冷极性分子纠缠态的制备及调控

项目编号: No.61275209

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 无线电电子学、电信技术

项目作者: 赵延霆

作者单位: 山西大学

项目金额: 88万元

中文摘要: 超冷极性分子因其空间不对称导致的固有电偶极矩使得它易于受外场操控,外场作用下的超冷极性分子量子态的制备及其调控是当前重要的科学前沿问题。本项目在超冷极性分子实验系统基础上,使用多种机制和方法制备和操控超冷极性分子,通过外场调控分子内态和空间取向,研究高密度超冷极性分子气体在不同外电场条件下的碰撞特性及其退相干过程,利用量子散射理论得出外电场条件下实验所需的相关参数,研究通过非弹性碰撞纯化基态分子的动力学过程;研究外场作用下的超冷极性分子长程偶极-偶极相互作用。利用超冷极性分子丰富的内在量子结构,研究在外场作用下增强超冷极性分子相干操控的物理机制以及超冷极性分子的量子纠缠态制备,发展对量子态调控的新原理、新技术,在分子量子态的操控、测量及应用方面取得重要进展。

中文关键词: 超冷极性分子;偶极-偶极相互作用;分子纠缠;电场操控;碰撞动力学

英文摘要: Ultracold polar molecules are amenable to be dominated by external field due to their permanent electric dipole moments (EDM) which arise from asymmetry of electric charge distribution. The quantum state preparation and manipulation of ultracold polar molecules under external field are the frontiers of science. Based on the experimental setup of ultrcold polar molecules, we will use different regime and methods to produce and manipulate ultracold polar molecules, regulate molecular internal states and orientation in space by external field, study the collision property and decoherence progress of ultracold polar molecule gas with high density under different external fields, get the optimization experimental parameters under external field by quantum scattering theory, investigate the dynamics process of ground state molecular purification through elastic collision and long range dipole-dipole interaction of ultracold polar molecules under external electric field. Because of their complex internal structures, we can also investigate the physical coherent enhancement mechanism of ultracold polar molecular under external field and study the quantum entanglement preparation of ultracold polar molecules. In addition, these development will be useful to the new principle and method for quantum state manipulation, and

英文关键词: ultracold polar molecules;dipole-dipole interaction;molecular entanglement;electrical field manipulation;collision dynamic

成为VIP会员查看完整内容
0

相关内容

【AAAI2022】利用化学元素知识图谱进行分子对比学习
专知会员服务
28+阅读 · 2021年12月3日
专知会员服务
29+阅读 · 2021年8月27日
2021年全球量子信息发展报告, 32页pdf
专知会员服务
79+阅读 · 2021年5月14日
专知会员服务
22+阅读 · 2021年3月9日
【经典书】线性代数元素,197页pdf
专知会员服务
56+阅读 · 2021年3月4日
专知会员服务
22+阅读 · 2020年9月14日
MIT科学家制造了量子龙卷风
机器之心
0+阅读 · 2022年1月14日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Age Optimal Sampling Under Unknown Delay Statistics
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月20日
A Sheaf-Theoretic Construction of Shape Space
Arxiv
0+阅读 · 2022年4月19日
小贴士
相关VIP内容
【AAAI2022】利用化学元素知识图谱进行分子对比学习
专知会员服务
28+阅读 · 2021年12月3日
专知会员服务
29+阅读 · 2021年8月27日
2021年全球量子信息发展报告, 32页pdf
专知会员服务
79+阅读 · 2021年5月14日
专知会员服务
22+阅读 · 2021年3月9日
【经典书】线性代数元素,197页pdf
专知会员服务
56+阅读 · 2021年3月4日
专知会员服务
22+阅读 · 2020年9月14日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员