项目名称: 可见光波段三维Luneburg透镜的广视场理想成像及其多光子制备

项目编号: No.61275171

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 无线电电子学、电信技术

项目作者: 赵震声

作者单位: 中国科学院理化技术研究所

项目金额: 92万元

中文摘要: Lüneburg透镜是一种基于梯度折射率材料的球形透镜,它能够把入射平行光集中到透镜表面或外部一点上,实现广视场、无像差的理想成像。目前Lüneburg透镜已被广泛应用于广角度、高定向、无像差的射电天文和低轨道卫星通信等微波领域中,在微纳光学及片上集成光学也具有巨大的潜在应用价值。在可见光及近红外波段,由于三维梯度折射率材料的加工非常困难,当前国内外研究主要集中在柱对称二维结构上。本项目将利用解析方法及数值仿真研究广义Lünebur透镜中电磁场的传输规律,分析不同折射率分布的Lüneburg透镜的成像特性,探索基于现实可用介质材料的Lüneburg透镜的理想成像极限;利用多光子激光直写加工技术加工光波段的梯度折射率等效介质材料,制备工作在光频率的三维Lüneburg透镜,实现三维光波段广视场、理想成像研究,并进一步探索利用全介质Lüneburg透镜实现超越衍射极限的超分辨成像的可能性。

中文关键词: Luneburg 透镜;电磁等效介质;激光直写加工;理想聚焦;超材料

英文摘要: The Lüneburg Lens is an appealing spherical device based on graded index (GRIN) optics material, which can take rays incident from infinity and focus them perfectly. It is a device for wide field-of-view, aberration-free imaging. The Lüneburg lens has been widely used for microwave applications, such as radio astronomy and low-orbit satallite communications, and may be useful in future nano-optics and on-chip integrable photonics. In optical frequencies, current researches mainly foucs on two-dimensional (2D) Lüneburg lens due to the fabrication difficulty of three-dimensional (3D) GRIN material. In this project, we will study the electromagnetic wave propagation in 3D Lüneburg lens by using analytical modeling and numerical simulations, analyse the imaging features of Lüneburg lens with different index distributions, and investigate the imaging limit of 3D Lüneburg lens fabricated by realistic materials. We will create 3D GRIN materials with multi-photon direct laser writing, fabricate turely 3D Lüneburg lens in optical frequencies, and test the wide field-of-view, abberation-free ideal imaging features of Lüneburg lens. Based on the results of ideal imaging, we will further investigate the possibility of subwavelength imaging properties with 3D dielectric Lüneburg lens.

英文关键词: Luneburg lens;effective medium;laser direct writing;ideal focusing;metamaterials

成为VIP会员查看完整内容
0

相关内容

专知会员服务
44+阅读 · 2021年5月24日
专知会员服务
39+阅读 · 2021年5月12日
专知会员服务
36+阅读 · 2021年4月23日
专知会员服务
42+阅读 · 2021年2月8日
专知会员服务
18+阅读 · 2020年12月23日
量子信息技术研究现状与未来
专知会员服务
40+阅读 · 2020年10月11日
MIT科学家制造了量子龙卷风
机器之心
0+阅读 · 2022年1月14日
这期Nature封面「雪崩」了!
新智元
0+阅读 · 2021年1月16日
红外弱小目标处理研究获进展
中科院之声
17+阅读 · 2017年11月19日
SAR成像原理及图像鉴赏
无人机
21+阅读 · 2017年8月14日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
Verified Compilation of Quantum Oracles
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月18日
Arxiv
0+阅读 · 2022年4月16日
Arxiv
65+阅读 · 2021年6月18日
小贴士
相关VIP内容
专知会员服务
44+阅读 · 2021年5月24日
专知会员服务
39+阅读 · 2021年5月12日
专知会员服务
36+阅读 · 2021年4月23日
专知会员服务
42+阅读 · 2021年2月8日
专知会员服务
18+阅读 · 2020年12月23日
量子信息技术研究现状与未来
专知会员服务
40+阅读 · 2020年10月11日
相关资讯
MIT科学家制造了量子龙卷风
机器之心
0+阅读 · 2022年1月14日
这期Nature封面「雪崩」了!
新智元
0+阅读 · 2021年1月16日
红外弱小目标处理研究获进展
中科院之声
17+阅读 · 2017年11月19日
SAR成像原理及图像鉴赏
无人机
21+阅读 · 2017年8月14日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
微信扫码咨询专知VIP会员