项目名称: 高分子修饰蛋白质微囊构建双亲性电子转移体系

项目编号: No.21263024

项目类型: 地区科学基金项目

立项/批准年度: 2013

项目学科: 数理科学和化学

项目作者: 何玉凤

作者单位: 西北师范大学

项目金额: 52万元

中文摘要: 采用表面修饰、原位聚合、聚合物自组装等方法制备不同构造的高分子修饰蛋白质基双亲性载体。利用稳定性较高的载体微囊中亲水-疏水纳米空腔,为电子转移反应体系构筑微环境,其中,内核疏水空腔用于结合水不溶性光敏剂-金属卟啉衍生物。将亲水-疏水电子转移体系的不同组分集于一体,研究该体系的光诱导电子转移反应效率,拓宽光敏剂的选择范围,并应用于模拟生物质制氢体系;利用高分子修饰蛋白质-金属卟啉光敏剂纳米微球的纳囊尺寸,通过长程电子转移反应,选择性地识别生物大分子。研究成果能够使人类更好地认识、模拟生命过程中的电子转移反应过程;为光诱导电子转移反应、生物大分子的识别提供一个稳定的载体材料;为探索光解水产氢提供新途径;为开发西部地区丰富的太阳能资源提供一种新型利用方式;为探索可应用于临床检测的新方法提供理论基础。

中文关键词: 高分子修饰蛋白;电子转移体系;金属卟啉;光催化活性;分子识别

英文摘要: Some new technologies, such as surface modification, in-situ polymerization and the macromolecular self assembly is used to prepare the polymer modified amphiphilic protein-based carriers with different composition. The stable and hydrophilic-hydrophobic nano-cavity in polymer carriers' microcapsule is used to construct the microenvironment for the electronic transfer reaction system. The polymer carriers bind aqueous insoluble photosensitizer (such as metalloporphyrin derivatives) with its inner hydrophobic cavity. With combining hydrophilic or hydrophobic compositions into one electronic transfer reaction system, the photoinduced electron transfer reaction efficiency of this system will be investigated. It can widen source of photosensitizer, and can be applied to mimic biomass hydrogen manufacturing system. The size effect of nano-capsule in polymer modified protein binding metalloporphyrin microspheres is used to smartly recognize biomacromolecule by electronic transfer reaction with long distance. The result could improve to explain and mimic electronic transfer reaction in living process, and give us a kind of stable carriers materials for recognizing biomacromolecule. It can explore new pathway for photosensitized reduction of water and preparation of hydrogen. The new method is useful to explore abundant

英文关键词: Polymer modified protein;Electron transfer system;Metalloporphyin;Photocatalytic activity;Molecule recognition

成为VIP会员查看完整内容
0

相关内容

【百图生科宋乐博士】 人工智能赋能医药研发
专知会员服务
28+阅读 · 2022年3月17日
专知会员服务
29+阅读 · 2021年8月27日
专知会员服务
25+阅读 · 2021年8月22日
专知会员服务
39+阅读 · 2021年6月13日
图表示学习在药物发现中的应用,48页ppt
专知会员服务
99+阅读 · 2021年4月30日
2021年中国人工智能产业发展趋势,13页pdf
专知会员服务
119+阅读 · 2021年3月18日
人工智能预测RNA和DNA结合位点,以加速药物发现
你买过什么很贵但不后悔的电子产品?
ZEALER订阅号
0+阅读 · 2022年1月22日
2022 年你最想拥有什么电子产品?
ZEALER订阅号
0+阅读 · 2022年1月9日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月28日
Arxiv
12+阅读 · 2021年7月26日
Arxiv
13+阅读 · 2021年5月25日
Arxiv
11+阅读 · 2018年5月21日
小贴士
相关主题
相关VIP内容
【百图生科宋乐博士】 人工智能赋能医药研发
专知会员服务
28+阅读 · 2022年3月17日
专知会员服务
29+阅读 · 2021年8月27日
专知会员服务
25+阅读 · 2021年8月22日
专知会员服务
39+阅读 · 2021年6月13日
图表示学习在药物发现中的应用,48页ppt
专知会员服务
99+阅读 · 2021年4月30日
2021年中国人工智能产业发展趋势,13页pdf
专知会员服务
119+阅读 · 2021年3月18日
相关资讯
人工智能预测RNA和DNA结合位点,以加速药物发现
你买过什么很贵但不后悔的电子产品?
ZEALER订阅号
0+阅读 · 2022年1月22日
2022 年你最想拥有什么电子产品?
ZEALER订阅号
0+阅读 · 2022年1月9日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
相关基金
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员