项目名称: 基于无机纳米粒子/高分子基体/环氧树脂/聚硫醇的自修复材料的制备及力学性能的研究

项目编号: No.51302006

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 一般工业技术

项目作者: 何宝凤

作者单位: 北京大学

项目金额: 26万元

中文摘要: 本课题拟系统的制备一系列不同种类、粒径和形貌的无机纳米粒子,并通过使用表面修饰剂或物理包覆有机化合物的方法对其进行表面修饰,然后将所制备的无机纳米粒子分别分散到含有光聚合单体/光引发剂/环氧树脂和光聚合单体/光引发剂/聚硫醇/叔胺催化剂的混合物中。两种混合物中光聚合单体经紫外光引发聚合形成微相分离后,可分别得到高分子基体/环氧树脂/纳米粒子和高分子基体/聚硫醇/叔胺/纳米粒子两种复合材料。如果将两种材料薄膜进行叠加、两种薄膜某一区域出现裂纹,那么两层薄膜中的环氧树脂和聚硫醇/叔胺将扩散到一起,发生交联反应,从而具有自修复功能。本项目将研究纳米粒子的种类、粒径、形貌、含量和表面修饰方法等对纳米粒子在上述材料中的分散性及对材料力学性能的影响规律和相关作用机理,探索一种新型的具有优异力学性能的可修复材料体系的制备方法。

中文关键词: 纳米粒子;环氧树脂;聚硫醇;自修复;力学性能

英文摘要: A series of inorganic nanoparticles with a variety of types, sizes and morphologies will be synthesized systematically, and modified by either surface chemical or physical modification. The nanoparticles will be dispersed into the mixtures of photo-polymerizable monomers/photoinitiator/epoxy and photo-polymerizable monomers/photoinitiator/polymercaptan/tertiary ammonium, separately. Then, these two mixtures will be irradiated by ultraviolet light to induce the crosslinking between the polymeriazable molecules to form micro- phase separation, and thus polymer matrix/epoxy/nanoparticles and polymer matrix/polymercaptan/tertiary ammonium/nanoparticles composites will be obtained individually. If these two composite films is overlapped and some crack occurs within them, the epoxy and the polymercaptan and the tertiary ammonium will fill the crack and incur thermal crosslinking between the molecules of the epoxy and the polymercaptan resulting in self-healing function. The effects of types, sizes, morphologies, contents and surface modification methods of the nanoparticles on the dispersion of the nanoparticles in the composites and on the mechanical properties of the composites as well as the related mechanism will be investigated, to explore a novel preparation method for self-healing system with high mechanical

英文关键词: nanoparticles;epoxy;polymercaptans;self-healing;mechanical property

成为VIP会员查看完整内容
0

相关内容

【NeurIPS 2021】基于潜在空间能量模型的可控和组分生成
专知会员服务
16+阅读 · 2021年10月23日
专知会员服务
28+阅读 · 2021年8月27日
专知会员服务
15+阅读 · 2021年8月10日
【ICML2021】学习分子构象生成的梯度场
专知会员服务
14+阅读 · 2021年5月30日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
25+阅读 · 2021年4月2日
【NeurIPS2020】可靠图神经网络鲁棒聚合
专知会员服务
19+阅读 · 2020年11月6日
这一次,彻底解决滚动穿透
IMWeb前端社区
35+阅读 · 2019年1月4日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年4月19日
Synthesizing Informative Training Samples with GAN
Arxiv
0+阅读 · 2022年4月15日
Arxiv
56+阅读 · 2021年5月3日
Arxiv
19+阅读 · 2021年2月4日
小贴士
相关VIP内容
【NeurIPS 2021】基于潜在空间能量模型的可控和组分生成
专知会员服务
16+阅读 · 2021年10月23日
专知会员服务
28+阅读 · 2021年8月27日
专知会员服务
15+阅读 · 2021年8月10日
【ICML2021】学习分子构象生成的梯度场
专知会员服务
14+阅读 · 2021年5月30日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
25+阅读 · 2021年4月2日
【NeurIPS2020】可靠图神经网络鲁棒聚合
专知会员服务
19+阅读 · 2020年11月6日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
微信扫码咨询专知VIP会员