项目名称: 局域电子态对表面等离激元双光子吸收特性的影响机理研究
项目编号: No.61475039
项目类型: 面上项目
立项/批准年度: 2015
项目学科: 无线电电子学、电信技术
项目作者: 郭康贤
作者单位: 广州大学
项目金额: 82万元
中文摘要: 表面等离激元和双光子吸收特性研究是目前国际上活跃的前沿研究领域之一。本项目拟采用有特色的研究方法--密度算符理论、第一性原理、二次量子化理论以及格林函数相结合的方法建立一种新的量子理论模型,研究低维半导体材料的表面等离激元及其双光子吸收特性,特别是研究局域电子态对低维半导体材料中表面等离激元双光子吸收特性的影响机理,在此基础上进一步研究电子-纵光学声子相互作用、电子-空穴相互作用以及介质的色散特性等对低维半导体材料中表面等离激元双光子吸收特性的影响等深层次物理问题。本项目的研究内容具有明显创新:从我们所查阅的大量相关文献来看,目前尚未发现有研究小组开展研究局域电子态、极化子效应和激子效应对低维半导体材料中表面等离激元双光子吸收特性影响的相关报道。因此,本项目的实施不仅有助于揭示和预测表面等离激元及其双光子吸收特性更深层次的物理原因,而且有助于发现新型的双光子材料以及全光信息处理技术的发展。
中文关键词: 表面等离激元;非线性光学效应;局域电子态;双光子吸收;低维半导体材料
英文摘要: Studies on surface plasmon polaritons and two-photon absorption properties are one of the advanced research fields in the world.This project plans to establish a new quantum model by using the methods of characteristics,such as Density Operator Theory,First Principle,Second Quantization Theory,and Green function, to research the surface plasmon polaritons and two- photon absorption properties of low- dimensional semiconductor materials.Particularly,we will reaearch the influence mechanism of localized electronic states on the two- photon absorption properties of surface plasmon polaritons. On this basis,we will further study on the influence of elctron-LO-phonon interaction, electron- hole interaction, and dispersion characteristics on the two- photon absorption properties of surface plasmon polaritons.The research contents are obviously innovation: From the literature reviewed by us,there are no reports about the studies on the influnence of localized electronic states, polaritons, and excitons on the two- photon absorption properties of surface plasmon polaritons.Therefore,the implementation of this project will not only help us to reveal and forecast the physical reasons of surface plasmon polaritons and two- photon absorption properties, but also help us to discover the new two- photon materials and the all-optical-information- processing techniques.
英文关键词: Surface plasmon polaritons;Nonlinear optical effect;Localized electronic states;Two-photon absorption;Low-dimensional semiconductor materials