项目名称: 高迁移率双极性传输有机半导体材料的理论设计研究

项目编号: No.21473071

项目类型: 面上项目

立项/批准年度: 2015

项目学科: 数理科学和化学

项目作者: 任爱民

作者单位: 吉林大学

项目金额: 85万元

中文摘要: 设计高迁移率有机半导体材料是当前有机电子学的关键问题。理论计算在有机半导体材料的分子设计中起着越来越重要的作用。双极性有机半导体材料具有大大简化器件的制备工艺,降低制作成本,有效降低能量功耗,改善噪声和操作稳定性等的优点,可以方便地构造新颖的光电器件,如类CMOS反向器、有机发光场效应晶体管和新型的传感器等,具有重要的实用价值。本项目拟用量子化学方法研究和设计具有高迁移率的双极性传输有机半导体材料,可应用于场效应晶体管、OLED和有机太阳能电池等领域。根据其具体应用领域, 对其载流子注入和传输、激子形成与传输、激子解离或发光过程等进行理论表征,探索有机晶体结构预测方法,用量子化学和分子动力学方法预测其电子和空穴迁移率,进而筛选出优秀的高迁移率双极性有机半导体,获得一系列重要的高迁移率双极性有机半导体的设计策略和理论预测晶体结构的理论和方法,为实验合成和设计光电和电光材料提供可靠的理论支持。

中文关键词: 双极性有机半导体;晶体结构预测;电荷传输;理论化学计算

英文摘要: Design of high mobility organic semiconductor material is a key issue in organic electronics. Theoretical calculation plays a more and more important role in the molecular design of organic semiconductor materials. With bipolar organic semiconductor materials can greatly simplify the preparation process of the device, reduce production costs, reduce energy consumption and noise and operating stability, can facilitate the construction of novel optoelectronic devices, such as complementary-like CMOS inverter, organic light-emitting field-effect transistor and a new sensor, it has important practical value. This project aims to research and design a series of ambipolar transport organic semiconductors with high mobility which can be applied to the fields such as field effect transistors, OLED and organic solar cells. According to its specific application field, injection of the carriers, exciton formation and transmission, luminescence or dissociation process will be theoretically characterized. Exploring crystal structure prediction method for some organic molecules will be performed, meanwhile the electron and hole mobility will be predicted by both quantum chemistry and molecular dynamics methods, and then some excellent ambipolar organic semiconductor materials with high mobility will be selected, a number of design strategies can be obtained for important ambipolar organic semiconductor materials, and some thoeries and methods for the prediction to crystal structure can be also attained. What we hope this project will provide reliable theoretical support for the experimental synthesis and design on optoelectronic and electroluminescent materials.

英文关键词: organic semiconductors with ambipolar transport;prediction to the crystal structure;charge transport;theoretical chemistry computation

成为VIP会员查看完整内容
0

相关内容

《零功耗通信》未来移动通信论坛
专知会员服务
18+阅读 · 2022年4月15日
【经典书】随机矩阵理论与无线网络,186和pdf
专知会员服务
49+阅读 · 2021年12月21日
【博士论文】分形计算系统
专知会员服务
33+阅读 · 2021年12月9日
专知会员服务
42+阅读 · 2021年9月7日
【ICML2021】学习分子构象生成的梯度场
专知会员服务
14+阅读 · 2021年5月30日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
51+阅读 · 2020年12月28日
专知会员服务
34+阅读 · 2020年11月26日
【2021图灵奖】授予: 高性能计算先驱Jack Dongarra
深度强化学习实验室
0+阅读 · 2022年3月31日
全固态电池领域,小公司的加速度——恩力动力
创业邦杂志
0+阅读 · 2022年2月25日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年5月19日
Arxiv
0+阅读 · 2022年5月16日
Arxiv
14+阅读 · 2021年6月30日
Arxiv
25+阅读 · 2021年3月20日
How to Fine-Tune BERT for Text Classification?
Arxiv
13+阅读 · 2019年5月14日
Arxiv
12+阅读 · 2018年9月15日
小贴士
相关主题
相关VIP内容
《零功耗通信》未来移动通信论坛
专知会员服务
18+阅读 · 2022年4月15日
【经典书】随机矩阵理论与无线网络,186和pdf
专知会员服务
49+阅读 · 2021年12月21日
【博士论文】分形计算系统
专知会员服务
33+阅读 · 2021年12月9日
专知会员服务
42+阅读 · 2021年9月7日
【ICML2021】学习分子构象生成的梯度场
专知会员服务
14+阅读 · 2021年5月30日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
51+阅读 · 2020年12月28日
专知会员服务
34+阅读 · 2020年11月26日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
相关论文
Arxiv
0+阅读 · 2022年5月19日
Arxiv
0+阅读 · 2022年5月16日
Arxiv
14+阅读 · 2021年6月30日
Arxiv
25+阅读 · 2021年3月20日
How to Fine-Tune BERT for Text Classification?
Arxiv
13+阅读 · 2019年5月14日
Arxiv
12+阅读 · 2018年9月15日
微信扫码咨询专知VIP会员