项目名称: 高光谱成象信息退化机理及恢复新技术研究

项目编号: No.61471148

项目类型: 面上项目

立项/批准年度: 2015

项目学科: 无线电电子学、电信技术

项目作者: 张晔

作者单位: 哈尔滨工业大学

项目金额: 88万元

中文摘要: 高光谱图象因其信息丰富、地物辨识能力强在工农业和国防等领域都有着广泛的应用前景,然而其成象质量在获取传输过程中受诸多因素影响,导致其获得的图象质量退化或某些信息损失,进而限制其进一步利用。针对该类问题,本项目首先从物理层对高光谱成象链中的像素级污染、条带缺失和垃圾波段等退化的产生机理进行深入分析,论证高光谱图象的三维稀疏特性,以及利用受损后数据估计原始稀疏表达的可行性。在此基础上,建立适合高光谱图象数据结构和应用特征的三维稀疏模型,并以此为重点,系统研究应对多种退化的恢复新技术。与此同时,探索独立数据的非相似性恢复效果评价体系,直接判断恢复数据的光谱域、空间域形态质量及其应用价值。本研究技术体系的实施,将极大提高现有高光谱数据源的成象质量和应用潜力,更好的造福人类。同时,也有助于高光谱数据表征、恢复技术和三维稀疏理论的发展。

中文关键词: 高光谱成象;信息恢复;退化机理;稀疏表征;三维恢复模型

英文摘要: Hyperspectral Images have a broad application prospect in many fields such as industrial and agricultural production and national defense due to the rich information and feature recognition ability. However, the imaging quality is affected by kinds of factors in the progress of acquisition and transmission, which leads to image quality degradation,loss of certain information and the fact limits the further use of hyperspectral images. Aim at the above problems, the project first analyze the generation mechanism of pixel-level contamination, corrupted stripes and junk bands in hyperspectral imaging chain deeply from the physical layer; then demonstrate three dimensional sparse characteristics of hyperspectral images and the feasibility of estimating original sparse expression using damaged data. On this basis, we would like to establish a three dimensional sparse model suitable for hyperspectral image data structure and application characteristics and systematic study a recovery technique able to respond to a variety of degradation comprehensively; meanwhile, explore an independent data non-similarity recovery effects evaluation system which directly judge the quality and application value of the spectral and space domain of the recovered data. The implementation of the technical system in our study will greatly increase the degree of imaging quality and potential applications of hyperspectral data source, thus benefit the mankind. At the same time, the project is also helpful to the development of hyperspectral data representation, recovery technology and three dimensional sparse theories.

英文关键词: hyperspectral imaging;information recovery;degradation mechanism;sparse representation;3D recovrery model

成为VIP会员查看完整内容
0

相关内容

《5G 毫米波赋能 8K 视频制作》未来移动通信论坛
专知会员服务
11+阅读 · 2022年4月15日
专知会员服务
32+阅读 · 2021年9月29日
专知会员服务
27+阅读 · 2021年9月6日
专知会员服务
31+阅读 · 2021年7月26日
专知会员服务
28+阅读 · 2021年6月4日
专知会员服务
35+阅读 · 2021年2月20日
专知会员服务
77+阅读 · 2020年12月6日
新时期我国信息技术产业的发展
专知会员服务
70+阅读 · 2020年1月18日
性能大幅提升!消除图像复原中的“misalignment”
极市平台
1+阅读 · 2021年12月29日
光学遥感图像目标检测算法综述
专知
8+阅读 · 2021年3月23日
事件知识图谱构建研究进展与趋势
THU数据派
99+阅读 · 2019年12月11日
深度学习的图像修复
AI研习社
22+阅读 · 2019年3月28日
【学科发展报告】无人船
中国自动化学会
27+阅读 · 2019年1月8日
图像美学质量评价技术发展趋势
科技导报
18+阅读 · 2018年6月25日
热烈祝贺机器视觉专委会委员董伟生教授荣获国家自然科学奖!
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月18日
Arxiv
0+阅读 · 2022年4月16日
How to Fine-Tune BERT for Text Classification?
Arxiv
13+阅读 · 2019年5月14日
小贴士
相关VIP内容
《5G 毫米波赋能 8K 视频制作》未来移动通信论坛
专知会员服务
11+阅读 · 2022年4月15日
专知会员服务
32+阅读 · 2021年9月29日
专知会员服务
27+阅读 · 2021年9月6日
专知会员服务
31+阅读 · 2021年7月26日
专知会员服务
28+阅读 · 2021年6月4日
专知会员服务
35+阅读 · 2021年2月20日
专知会员服务
77+阅读 · 2020年12月6日
新时期我国信息技术产业的发展
专知会员服务
70+阅读 · 2020年1月18日
相关资讯
性能大幅提升!消除图像复原中的“misalignment”
极市平台
1+阅读 · 2021年12月29日
光学遥感图像目标检测算法综述
专知
8+阅读 · 2021年3月23日
事件知识图谱构建研究进展与趋势
THU数据派
99+阅读 · 2019年12月11日
深度学习的图像修复
AI研习社
22+阅读 · 2019年3月28日
【学科发展报告】无人船
中国自动化学会
27+阅读 · 2019年1月8日
图像美学质量评价技术发展趋势
科技导报
18+阅读 · 2018年6月25日
热烈祝贺机器视觉专委会委员董伟生教授荣获国家自然科学奖!
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
微信扫码咨询专知VIP会员