项目名称: 聚合物太阳能电池中电子给/受体界面电荷转移态的研究

项目编号: No.51303118

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 一般工业技术

项目作者: 周祎

作者单位: 苏州大学

项目金额: 25万元

中文摘要: 近两年来,聚合物太阳能电池的效率不断提高,而其研究热点主要集中在新型窄带隙共轭聚合物的设计研发,以及反向器件结构的应用。尽管如此,聚合物太阳能电池的效率(8-9%)仍远小于理想太阳能电池的细致平衡效率理论极限。本项目拟采用实验与理论相结合的方法,运用光致发光、电致发光、傅立叶转换光电流等光谱实验方法,有目的地检测分析系列新型窄带隙高效率聚合物太阳能电池以及反向结构器件的电荷转移态(CT态)。通过揭示高效率材料及器件的CT态能级变化规律,掌握CT态与反向结构、界面修饰材料、聚合物激发态、电子给/受体材料能级、器件开路电压、短路电流以及效率的关系。希望通过对CT态的研究,探求激子分离、电荷传输等过程制约器件效率的根本原因。并希望以此为理论依据,指导聚合物材料的设计优化以及界面修饰材料的筛选,这对提高聚合物太阳能电池效率具有非常重要的理论与实践意义。

中文关键词: 电荷转移态;能量损失;界面修饰层;形貌调控;

英文摘要: Research in polymer solar cells has advanced over recent years. Power conversion efficiency (PCE) of 8% to above 9% are reported based on the development of low band gap polymers and inverted device structure. However, the highest PCEs of polymer solar cells are currently not even close to the Shockley-Queisser limit. In this proposal, by combining the experimental observation and theory analysis, we intend to investigate the charge transfer (CT) state, which is a ground-state formed at the interface of electron donor and acceptor, through the methods of photoluminescence spectra, electroluminescence spectra and fourier-transform photocurrent spectroscopy. Our research target focus on series of newly developed low band gap polymers and inverted device structure. we hope that we can discover the correlation between CT state and device structure, interface modification materials, energy of the polymer exciton, HOMO/LUMO level of D/A materials, VOC and JSC. Through this important intermediate state we can even direct the design of new device structures and high performance materials.The results gained could be useful for understanding the mechanism of photocurrent generation and provide valuable information for improving the efficiencies of polymer solar cells.

英文关键词: charge transfer state;energy loss;interface layer;morphology control;

成为VIP会员查看完整内容
0

相关内容

NeurIPS 2021 | 微观特征混合进行宏观时间序列预测
专知会员服务
40+阅读 · 2021年11月12日
专知会员服务
42+阅读 · 2021年9月7日
【ICML2021】学习分子构象生成的梯度场
专知会员服务
14+阅读 · 2021年5月30日
专知会员服务
31+阅读 · 2021年5月7日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
机器学习在材料科学中的应用综述,21页pdf
专知会员服务
48+阅读 · 2019年9月24日
全新量子充电技术:最快9秒充满一辆电动汽车?
大数据文摘
0+阅读 · 2022年3月22日
小芯片大安全:数字隔离器的前世今生
中国科学院自动化研究所
0+阅读 · 2021年3月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Analyzing Echo-state Networks Using Fractal Dimension
Arxiv
33+阅读 · 2022年2月15日
小贴士
相关主题
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员