项目名称: 石墨烯/氮掺杂多孔碳复合电极膜的制备与电驱动性质研究

项目编号: No.51303204

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 一般工业技术

项目作者: 孔丽蓉

作者单位: 江苏大学

项目金额: 25万元

中文摘要: 和传统离子型聚合物-金属复合电驱动器件相比,以碳基材料为电极的驱动器件克服了贵金属电极柔韧性差,溶胀时易发生断裂的缺点,大大提高了响应的循环稳定性,因此在智能机器人,人工助力系统和微机电操作等领域有着优异的应用前景。在已经报道的碳材料中,石墨烯由于具有较高的理论比表面积和量子伸长率,有望成为性能优异的驱动电极材料。然而目前所使用的大部分石墨烯基材料在制备过程中,其表面受范德华力影响而层层紧密堆叠,导致比表面积和多孔孔径减小,比电容较低,不利于大驱动位移的获得。针对这种现象,本项目拟制备石墨烯/氮掺杂多孔碳复合电极膜,首先,利用石墨烯表面的氮掺杂碳层避免石墨烯的堆叠,提高电双层电容;其次,利用氮掺杂碳层本身可控的分级与多孔结构进一步提高电极材料的电双层电容,最后,利用聚苯胺基碳材料中的掺杂氮提高电极材料的赝电容,从而有效地提高石墨烯基驱动器件的高频响应行为和稳定性,为其实际应用奠定基础。

中文关键词: 二维碳材料;多孔;掺杂;储能;驱动

英文摘要: Compared with the traditional ionic polymer-metal composite electric actuators, carbon electrode based actuators overcomed the shortcomings of noble metal electrode, including its poor flexibility and easily to be broken upon swelling, and thus the cycling stability was improved. As a result, they has wide applications in intelligent robot, microcomputer operating system and many other fields. Among the reported carbon materials, graphene is expected to be good electrode materials for actuators with excellent performance due to its high specific surface area and high electron injection elongation. However, up to now, for most of the prepared graphene materials, the restacking of graphene layer happened during the preparation process which was caused by Vander Waals force between them and will lead to the decrease of specific surface area and pore sizes in graphene and finally lead to the decrease of the specific capacity. This will lead to small actuation displacement. Considering the above problems, this project aims to prepare graphene/nitrogen-doped porous carbon composite films as electrode for actuators. Firstly, the nitrogen doped carbon layer on the surface of graphene could avoid the restacking of graphene layers and increase the electric double layer capacitance; Secondly, the controllable hierarchical

英文关键词: two dimensional carbon materials;porous;doping;energy storage;actuation

成为VIP会员查看完整内容
0

相关内容

《人工智能在无人机中的应用》报告,60页pdf
专知会员服务
152+阅读 · 2022年3月30日
【AAAI2022】利用化学元素知识图谱进行分子对比学习
专知会员服务
27+阅读 · 2021年12月3日
NeurIPS 2021 | 微观特征混合进行宏观时间序列预测
专知会员服务
40+阅读 · 2021年11月12日
专知会员服务
21+阅读 · 2021年9月23日
专知会员服务
21+阅读 · 2021年6月26日
专知会员服务
31+阅读 · 2021年5月7日
卷积神经网络模型发展及应用(中文版),20页pdf
专知会员服务
88+阅读 · 2021年1月15日
全固态电池领域,小公司的加速度——恩力动力
创业邦杂志
0+阅读 · 2022年2月25日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Differential Privacy: What is all the noise about?
Arxiv
0+阅读 · 2022年5月19日
Arxiv
0+阅读 · 2022年5月18日
Arxiv
12+阅读 · 2021年5月3日
Learning from Few Samples: A Survey
Arxiv
77+阅读 · 2020年7月30日
Few-shot Learning: A Survey
Arxiv
362+阅读 · 2019年4月10日
Arxiv
11+阅读 · 2018年7月31日
小贴士
相关主题
相关VIP内容
《人工智能在无人机中的应用》报告,60页pdf
专知会员服务
152+阅读 · 2022年3月30日
【AAAI2022】利用化学元素知识图谱进行分子对比学习
专知会员服务
27+阅读 · 2021年12月3日
NeurIPS 2021 | 微观特征混合进行宏观时间序列预测
专知会员服务
40+阅读 · 2021年11月12日
专知会员服务
21+阅读 · 2021年9月23日
专知会员服务
21+阅读 · 2021年6月26日
专知会员服务
31+阅读 · 2021年5月7日
卷积神经网络模型发展及应用(中文版),20页pdf
专知会员服务
88+阅读 · 2021年1月15日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
相关论文
Differential Privacy: What is all the noise about?
Arxiv
0+阅读 · 2022年5月19日
Arxiv
0+阅读 · 2022年5月18日
Arxiv
12+阅读 · 2021年5月3日
Learning from Few Samples: A Survey
Arxiv
77+阅读 · 2020年7月30日
Few-shot Learning: A Survey
Arxiv
362+阅读 · 2019年4月10日
Arxiv
11+阅读 · 2018年7月31日
微信扫码咨询专知VIP会员