项目名称: 基于影像关联层次模型的遥感影像检索研究
项目编号: No.41301403
项目类型: 青年科学基金项目
立项/批准年度: 2014
项目学科: 天文学、地球科学
项目作者: 刘军
作者单位: 中国科学院深圳先进技术研究院
项目金额: 25万元
中文摘要: 海量遥感影像从数据到信息再到知识的分析是地学领域的基础科学问题,其中高效影像检索是关键技术之一。针对现有低层特征描述与人类认知存在语义差距,而遥感影像语义检索又缺乏成熟理论和方法的现状以及对语义信息的需求,本项目引入关联规则数据挖掘的手段,以探求遥感影像语义检索新方法为目标,提出影像关联层次模型,从特征与语义两个层次,实现遥感影像检索。研究内容包括:(1)在特征层,挖掘影像边缘像素、对象属性、对象邻接三类关联规则作为特征,构建影像内容描述模型,实现特征级检索。(2)在语义层,提出关联规则语义模型,建立影像、信息与知识之间的映射,从深层次缩小"语义鸿沟",实现语义级检索。(3)针对特定目标的检索,提出知识表达模型,形成知识库;加入期望表示模型,引导影像检索的过程和辅助决策,实现面向任务的遥感影像检索。本项目建立影像内容与高层语义的桥梁,有望为实现遥感影像的语义检索提供一条新的途径。
中文关键词: 遥感影像检索;影像关联层次模型;关联规则数据挖掘;语义检索;影像预处理
英文摘要: Remote sensing image retrieval is a key technology for the basic scientific issue of transforming massive remote sensing image data to information and then to knowledge. Aiming at the semantic gap between low level feature description and human perception, the lack of mature theories and methods for remote sensing image semantic retrieval and the need for semantic information, this project tries to explor a new method for remote sensing semantic retrieval. The association rule data mining technology is introduced into this project, and the image association hierarchy model is proposed, which is used to implement the remote sensing image retrieval on feature and semantic levels.The main contents of research include the following aspects: (1) On feature level, the edge pixel, object property and object adjacency association rules are mined as features to establish the image content description model and realize the feature level retrieval. (2) On semantic level, the association rule semantic model is proposed, which is used to create a mapping between image, information and knowledge, and bridge the "semantic gap" through deeper aspects. (3) Aiming at the retrieval of specific targets, the knowledge expression model is proposed to establish the knowledge database, and then the expection description model is added
英文关键词: Remote sensing image retrieval;image association hierarchy model;association rule data mining;semantic retrieval;image pre-processing