项目名称: “石墨烯-单分子磁体Fe4-石墨烯”分子器件的设计及输运性质研究

项目编号: No.11504278

项目类型: 青年科学基金项目

立项/批准年度: 2016

项目学科: 数理科学和化学

项目作者: 俎凤霞

作者单位: 武汉工程大学

项目金额: 20万元

中文摘要: 自旋电子学是同时利用电子的电荷和自旋来存储和处理信息的一门新兴的交叉学科。随着电子器件向着不断小型化趋势发展,传统的硅基电子器件会受到量子尺寸效应的限制,突破这种极限的出路之一是发展基于单个分子级别的分子自旋电子学器件。单分子磁体由于其弱的自旋轨道相互作用以及弱的超精细相互作用就成为自旋电子学材料的热门候选之一。本项目将以石墨烯为电极,结合实验上已经合成出的单分子磁体Fe4,理论上设计和构筑一些具有多功能的单分子自旋电子学器件,如自旋过滤、自旋阀、自旋场效应管以及热输运器件等等。并利用密度泛函理论(DFT)和非平衡格林函数(NEGF)相结合的方法,对其输运特性进行理论预测及机理分析研究,这可以为分子自旋电子学器件的研制提供材料基础和科学依据,具有重要的学术意义和潜在的应用价值。

中文关键词: 单分子磁体;石墨烯;非平衡格林函数;分子器件;自旋极化电子输运

英文摘要: Spintronics is a cross disciplinary, which Storage and process information by utilizing electronic charge and spin. Accompanying the progress of microelectronics, the utmost of the silicon electronic devices, caused by the physical limit from its extremely small scale, is about to be reached. One of approaches is developing molecular spintroncis with nanometer scale. Single-molecule magnets with weak spin-orbital interaction are regarded as one of promising candidates for the next-generation electronic device. We design a series of Fe4-based single-molecule electronic devices with grapheme electrodes, including spin filters, spin valves and spin-FET. We investigate the transport properties and physical machanism of several molecule junctions by performing the first principles calculations based on density functional theory (DFT) and nonequilibrium Green’s function (NEGF). Our results can provide fundamental guidelines for designing of molecular electronic devices. It would has important values in academic significance and potential application.

英文关键词: single-molecule magnets;graphene;nonequilibrium Green's function;molecular device;spin-polarized electron transport

成为VIP会员查看完整内容
0

相关内容

【AAAI 2022】299页PPT,NUS最全《自动合成》教程
专知会员服务
18+阅读 · 2022年3月17日
ICLR 2022|化学反应感知的分子表示学习
专知会员服务
19+阅读 · 2022年2月10日
专知会员服务
41+阅读 · 2021年9月7日
专知会员服务
17+阅读 · 2021年6月12日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
21+阅读 · 2021年3月9日
【AAAI2021】图卷积网络中的低频和高频信息作用
专知会员服务
57+阅读 · 2021年1月6日
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月19日
Adversarial Transfer Learning
Arxiv
12+阅读 · 2018年12月6日
小贴士
相关VIP内容
【AAAI 2022】299页PPT,NUS最全《自动合成》教程
专知会员服务
18+阅读 · 2022年3月17日
ICLR 2022|化学反应感知的分子表示学习
专知会员服务
19+阅读 · 2022年2月10日
专知会员服务
41+阅读 · 2021年9月7日
专知会员服务
17+阅读 · 2021年6月12日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
21+阅读 · 2021年3月9日
【AAAI2021】图卷积网络中的低频和高频信息作用
专知会员服务
57+阅读 · 2021年1月6日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
微信扫码咨询专知VIP会员