项目名称: 基于59Fe(II)定向诱导及示踪技术研究纳米带鱼肽自组装机理及构效关系

项目编号: No.31471609

项目类型: 面上项目

立项/批准年度: 2015

项目学科: 农业科学

项目作者: 邓尚贵

作者单位: 浙江海洋大学

项目金额: 91万元

中文摘要: 活性肽进入微米范围的细胞是其发挥功效的关键步骤之一。利用金属离子具有控制多肽空间结构的能力诱导活性肽形成的纳米颗粒会表现出良好的表观效应,同时基于前期研究发现带鱼酶解物中有与铁离子高亲力的活性肽,本项目进一步以带鱼活性肽为基质,提出同位素59Fe(Ⅱ)诱导带鱼活性肽自组装成放射状结构模型 纳米带鱼铁肽假说,从59Fe(Ⅱ)疏水核心结构设计出发,提出59Fe(Ⅱ)诱导带鱼酶解肽成放射状自组装微粒,该微粒通过纳米孔道的空间限域效应实现了带鱼肽/铁离子稳定化。同时利用γ示踪技术结合计算机模拟研究放射性59Fe(Ⅱ)标记的纳米自组装多肽在菌体内的富集及抗菌机制。围绕金属定向诱导-纳米自组装-微粒稳定性-示踪生物活性展开探索,验证并完善放射状结构模型微粒形成机理假说。通过研究深入认识纳米59Fe(Ⅱ)带鱼肽微粒的形成机理及生物学机制,为其在新功能食品领域的研发提供理论依据。

中文关键词: 纳米;自组装;带鱼肽;59Fe(II);构效关系

英文摘要: Size conversion is a pivotal step of bioactive peptide migration into the micron range of cells. Uses the principle,that metal ion having the ability to control the spatial structure of a polypeptide,induced nanoparticles from peptides will exhibit good apparent effect. Based on the research result of previous NSFC subject that hairtail hydrolysates has a kind of active peptide which has high affinity with iron ion. The project for the matrix according to the hairtail active peptide. The hypotheses are coming out that isotope 59Fe (Ⅱ) induces active peptides self-assemble into a radial structure model . From 59Fe (Ⅱ) hydrophobic core structure design , this paper proposes 59Fe (Ⅱ) -induced hairtail enzymatic peptides self-assemble into radially particles , the nano particles through the pore space confinement effect achieved the stabilized --peptide and iron ions. While study the antibacterial mechanisms of 59Fe (Ⅱ) -labeled nano-peptide using γ tracer techniques combined with computer simulation of radioactive. Around metal oriented induction - nano-assembly - particulate stability - tracing biological activity , validating and improving the formation mechanism hypothesis of radial structure model particle. Providing basis for its application in the field of new functional foods.

英文关键词: nanometer;self-assembly;hairtail peptide;59Fe(II);Structure-activity relationship

成为VIP会员查看完整内容
0

相关内容

中国商用车电动化发展 研究报告,85页pdf
专知会员服务
13+阅读 · 2022年3月23日
AI药物研发发展研究报告(附报告)
专知会员服务
89+阅读 · 2022年2月11日
【AAAI2022】利用化学元素知识图谱进行分子对比学习
专知会员服务
27+阅读 · 2021年12月3日
专知会员服务
25+阅读 · 2021年9月10日
专知会员服务
28+阅读 · 2021年8月27日
专知会员服务
29+阅读 · 2021年8月16日
元学习-生物医学中连接标记和未标记数据
专知会员服务
29+阅读 · 2021年8月3日
专知会员服务
15+阅读 · 2021年6月6日
基于生理信号的情感计算研究综述
专知会员服务
61+阅读 · 2021年2月9日
这期Nature封面「雪崩」了!
新智元
0+阅读 · 2021年1月16日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月19日
Learning to execute or ask clarification questions
Arxiv
0+阅读 · 2022年4月18日
Arxiv
10+阅读 · 2020年11月26日
Arxiv
13+阅读 · 2020年4月12日
小贴士
相关主题
相关VIP内容
中国商用车电动化发展 研究报告,85页pdf
专知会员服务
13+阅读 · 2022年3月23日
AI药物研发发展研究报告(附报告)
专知会员服务
89+阅读 · 2022年2月11日
【AAAI2022】利用化学元素知识图谱进行分子对比学习
专知会员服务
27+阅读 · 2021年12月3日
专知会员服务
25+阅读 · 2021年9月10日
专知会员服务
28+阅读 · 2021年8月27日
专知会员服务
29+阅读 · 2021年8月16日
元学习-生物医学中连接标记和未标记数据
专知会员服务
29+阅读 · 2021年8月3日
专知会员服务
15+阅读 · 2021年6月6日
基于生理信号的情感计算研究综述
专知会员服务
61+阅读 · 2021年2月9日
相关资讯
这期Nature封面「雪崩」了!
新智元
0+阅读 · 2021年1月16日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
微信扫码咨询专知VIP会员