项目名称: 热激子反系间窜越荧光材料实现100%内量子效率的理论和实验探索
项目编号: No.51473063
项目类型: 面上项目
立项/批准年度: 2015
项目学科: 一般工业技术
项目作者: 杨兵
作者单位: 吉林大学
项目金额: 84万元
中文摘要: 发光材料是有机发光二极管(OLED)的创新源头,申请者从材料的分子设计入手,重点研究发光材料分子结构、电子结构与发光性能的关系,设计优化分子结构、电子结构与激发态特征,实现高激子利用率、高发光效率、高稳定的新型廉价荧光材料设计目标。基于Donor-Acceptor(D-A)分子体系,探索准确定量描述电荷转移(CT)性质激发态的理论模型方法,探讨分子内D-A体系的给受电子能力、D/A间耦合强度、连接方式、空间位阻,以及环境因素等影响杂化局域-电荷转移(HLCT)激发态特征的规律。考察纯有机体系中构造T1-T2间大能隙的分子结构因素,以及自旋-轨道耦合强度的调节因素。建立预测辐射速率、非辐射(如系间窜越、内转换)速率的定量理论模型,揭示高能态(热)激子反系间窜越T→S提高辐射S激子比例(突破激子统计)的优越性。理论与实验结合,期望形成具有自主知识产权的新一代OLED发光材料分子设计新理念。
中文关键词: 有机电致发光;给-受体材料;反系间窜越;杂化激发态;热激子
英文摘要: The electroluminescence materials are the innovation source of the OLED industry. The applicant's research starts from the molecular design of EL materials, stressing on the research on the relation between the molecular-electron structure and the EL performance, aiming at a series of high PL efficiency, high exciton utilization,high stability and low-cost electro-fluorescent materials. We developed the Donor-Acceptor material system to approach a method to percisely describe the character of Charge-transfer(CT) state, including the electron donating(or accepting) abilities, the D-A coupling strengths, the connecting patterns, the space hinderances and the environmental factors such as solvent polarities, staking and strengths of the electron-fields, and to through light upon the specific factors that influence the character of HLCT state. Next, the origin of the large energy gap of T2-T1 that sustain the hot-exciton method is researched in depth. The applicant researched on the structrual character and the spin-orbital coupling character(for example, the heavy-metal atom effect and the specific character of excited states, etc) of the materials with the large T2-T1 energy gap, and built up a theoretical model for the pridiction of the rates of radiactive and non-radiactive process(for example, the innersystem transfer and the intersystem cross, etc) to throw light upon the advantages of the hot-exciton mechanism that breakthrough the limit of radiative excitons on the higher excited state RISC channel. The research work is combined with theoritical and experimental method, and is hoping to develop a new idea on the next generation OLED material with completely independent intellectual property rights.
英文关键词: Organic electroluminescence;Donor-Acceptor material;Reverse intersystem crossing;hybrid excited-state;hot exciton