项目名称: 高复杂性脑电数据的数据挖掘及其在癫痫性发作自动检测中的应用

项目编号: No.61473223

项目类型: 面上项目

立项/批准年度: 2015

项目学科: 其他

项目作者: 张瑞

作者单位: 西北大学

项目金额: 81万元

中文摘要: 面向重症监护癫痫病人的脑电图是一类具有超大规模、多变、非平衡、含复杂噪声的高复杂性脑电数据,有关此类数据的数据挖掘是医学临床诊断的急需,但目前几乎还是空白。本项目拟以癫痫性发作自动检测为背景,聚焦对高复杂性脑电数据数据挖掘的基本理论与方法展开系统研究。拟提出包含二维表示的频域特征、融合线性与非线性的时域特征、以及刻画发作起始位置及其演变过程的空间模式特征的特征提取方法;建立基于L_0.5稀疏正则化理论与流行正则化理论的异域半监督转移学习模型,设计快速求解算法并对其收敛性进行系统分析;构造基于boosting思想及计算机视觉的完整、可解释的综合分类集成系统;以癫痫性发作的自动检测为应用来验证所研制系统的可用性与有效性。项目成果将为高复杂性脑电数据的本质特征提取、高复杂性脑电数据的学习模式挖掘、实用癫痫性发作自动检测系统研发等提供重要的理论、方法与系统基础,亦可直接用于相关医疗诊断的辅助工具。

中文关键词: 数据挖掘;特征选择;稀疏表示;半监督学习;集成学习

英文摘要: Continuous Electroencephalography monitoring in the Intensive Care Unit environment (ICU-EEG) has become an essential component of top-tier medical care for patients with acute neurological injuries. ICU-EEG data presents a special challenge for computational analysis because of its high complexity, large scale, massive variability, imbalance, and the large number and varied character of both external and physiological background noise that can contaminate signals acquired in the ICU environment. Despite the urgent medical demand for automated analysis of ICU-EEG data, very little research has been done to bring the existing data mining to ICU-EEG data, and to develop the novel theoretical advances that will be needed to cope with the unique challenges posed by mining this data. This project focuses on developing fundamental theory and methods of data mining for such highly complicated EEG data systematically, with a focus on automated detection of epileptic seizures. Firstly, a multi-element feature extraction method will be developed, where 2-D features in frequency domain, linear and nonlinear features in time domain, and the features based on the location of seizure origin and the spatial pattern of seizure spread throughout the brain over time are all extracted and combined. Secondly, a semi-supervised domain transferred (SSDT) learning model will be constructed on the basis of L_0.5 sparse regularization and manifold regularization. Fast algorithms for solving the SSDT model will be designed and the convergence of the algorithms will be analyzed. Thirdly, an ensemble classification system based on boosting and cascaded classifier methods from computer vision will be adapted to epileptic seizure detection in ICU-EEG data. Finally, the application of the automatic epileptic seizure detection will be tested, refined, and validated on a large set of ICU-EEG recordings to verify the feasibility and efficiency of the above constructed system. The project results will provide significant theoretical advances, methods and a system for extracting the essential data features, clarifying the appropriate learning framework for highly complicated biomedical data, and will yield a much needed practical solution to the problem of epileptic seizure detection which can be used to assist physicians in caring for critically ill patients.

英文关键词: data mining;feature extraction;sparse representation;semi-supervised learning;ensemble learning

成为VIP会员查看完整内容
0

相关内容

数据挖掘(Data mining)一般是指从大量的数据中自动搜索隐藏于其中的有着特殊关系性的信息和知识的过程。
医学图像关键点检测深度学习方法研究与挑战
专知会员服务
50+阅读 · 2022年4月10日
专知会员服务
40+阅读 · 2021年7月24日
专知会员服务
122+阅读 · 2021年6月19日
专知会员服务
79+阅读 · 2021年2月16日
基于生理信号的情感计算研究综述
专知会员服务
61+阅读 · 2021年2月9日
专知会员服务
144+阅读 · 2021年2月3日
专知会员服务
114+阅读 · 2021年1月11日
专知会员服务
45+阅读 · 2020年11月13日
专知会员服务
87+阅读 · 2020年8月2日
10个开源工业检测数据集汇总
极市平台
2+阅读 · 2022年2月9日
机器学习中原型学习研究进展
专知
0+阅读 · 2022年1月18日
【动态】CSIG脑图谱与类脑前沿交叉学科论坛成功召开
中国图象图形学学会CSIG
0+阅读 · 2021年12月2日
机器学习医学进展有助改善肠道疾病检测
TensorFlow
0+阅读 · 2021年8月31日
基于TensorFlow和Keras的图像识别
Python程序员
16+阅读 · 2019年6月24日
最全综述 | 医学图像处理
计算机视觉life
57+阅读 · 2019年6月15日
领域应用 | 中医临床知识图谱的构建与应用
开放知识图谱
33+阅读 · 2017年12月12日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年5月3日
小贴士
相关VIP内容
医学图像关键点检测深度学习方法研究与挑战
专知会员服务
50+阅读 · 2022年4月10日
专知会员服务
40+阅读 · 2021年7月24日
专知会员服务
122+阅读 · 2021年6月19日
专知会员服务
79+阅读 · 2021年2月16日
基于生理信号的情感计算研究综述
专知会员服务
61+阅读 · 2021年2月9日
专知会员服务
144+阅读 · 2021年2月3日
专知会员服务
114+阅读 · 2021年1月11日
专知会员服务
45+阅读 · 2020年11月13日
专知会员服务
87+阅读 · 2020年8月2日
相关资讯
10个开源工业检测数据集汇总
极市平台
2+阅读 · 2022年2月9日
机器学习中原型学习研究进展
专知
0+阅读 · 2022年1月18日
【动态】CSIG脑图谱与类脑前沿交叉学科论坛成功召开
中国图象图形学学会CSIG
0+阅读 · 2021年12月2日
机器学习医学进展有助改善肠道疾病检测
TensorFlow
0+阅读 · 2021年8月31日
基于TensorFlow和Keras的图像识别
Python程序员
16+阅读 · 2019年6月24日
最全综述 | 医学图像处理
计算机视觉life
57+阅读 · 2019年6月15日
领域应用 | 中医临床知识图谱的构建与应用
开放知识图谱
33+阅读 · 2017年12月12日
相关基金
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
微信扫码咨询专知VIP会员