项目名称: La1-xSrxCrO3-MgAl2O4复合陶瓷的合成、结构及高温电性能研究

项目编号: No.51502335

项目类型: 青年科学基金项目

立项/批准年度: 2016

项目学科: 无机非金属材料学科

项目作者: 张博

作者单位: 中国科学院新疆理化技术研究所

项目金额: 21万元

中文摘要: 不同晶体结构材料复合具有多功能交叉耦合效应,是新功能材料开发的重要手段。高电导相LaCrO3钙钛矿材料具有优良的耐高温性能,高阻相MgAl2O4尖晶石材料有助于提高复合材料的电阻率和高温稳定性,但二者烧结活性较差,而掺杂或真空热压烧结可有效提高二者的致密度。. 本项目拟以La1-xSrxCrO3-MgAl2O4复合陶瓷材料为研究对象,对复合材料微观结构与高温电性能之间的关系进行研究。通过比较常规烧结和真空热压烧结对复合陶瓷组成、结构和电性能的影响规律,探讨复合材料相扩散规律和离子迁移机制,揭示复合材料导电机理;比较不同老化气氛(空气、真空)对复合陶瓷电性能的影响规律,揭示复合材料老化机制。. 项目的研究成果对La1-xSrxCrO3-MgAl2O4高致密度复合陶瓷的制备及其在高温热敏陶瓷领域的应用具有重要意义。

中文关键词: 复合陶瓷;高温;钙钛矿;缺陷作用机制;电学性能

英文摘要: It is believed that compositing two different crystal structures of materials has multifunctional cross-coupling effect, which is an important means of the development of new functional materials. The perovskite-type LaCrO3 exhibits a high conductivity and high-temperature resistance performance. The spinel-type MgAl2O4 has a high resistivity and can increase the resistivity and improve the high temperature stability of the composite materials. However, these two materials show poor sinterability and can be densified by the elements doping or vacuum hot-pressing sintering. . This proposal selects the La1-xSrxCrO3-MgAl2O4 composite ceramics as the the research object, focuses on the relationship between microstructure and high temperature electrical properties of composite ceramics. To probe into the interdiffusion rules and ion migration mechanism, and revel the conduction mechanism through investigating the effects of conventional sintering and vacuum hot-pressing sintering on composition, structure and electrical properties of composites; To revel the aging mechanism through comparing the effects of different aging atmosphere (air、vacuum) on electrical properties of composite ceramics. . The achievements of this project will have great significance in the preparation of La1-xSrxCrO3-MgAl2O4 high-density composite ceramics and their application in the field of high temperature thermistor ceramics.

英文关键词: Composite Ceramics;High Temperature;Perovskite;Defect Reaction Mechanism;Electrical Properties

成为VIP会员查看完整内容
0

相关内容

【AAAI 2022】299页PPT,NUS最全《自动合成》教程
专知会员服务
19+阅读 · 2022年3月17日
Nat. Mach. Intell. | 分子表征的几何深度学习
专知会员服务
25+阅读 · 2021年12月26日
专知会员服务
43+阅读 · 2021年9月7日
专知会员服务
33+阅读 · 2021年5月7日
专知会员服务
37+阅读 · 2021年4月23日
专知会员服务
29+阅读 · 2020年8月8日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
33+阅读 · 2021年12月31日
小贴士
相关主题
相关VIP内容
【AAAI 2022】299页PPT,NUS最全《自动合成》教程
专知会员服务
19+阅读 · 2022年3月17日
Nat. Mach. Intell. | 分子表征的几何深度学习
专知会员服务
25+阅读 · 2021年12月26日
专知会员服务
43+阅读 · 2021年9月7日
专知会员服务
33+阅读 · 2021年5月7日
专知会员服务
37+阅读 · 2021年4月23日
专知会员服务
29+阅读 · 2020年8月8日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
微信扫码咨询专知VIP会员