项目名称: 面向高频多态迭代计算的超大动态图自适应数据管理关键技术
项目编号: No.61472071
项目类型: 面上项目
立项/批准年度: 2015
项目学科: 自动化技术、计算机技术
项目作者: 谷峪
作者单位: 东北大学
项目金额: 80万元
中文摘要: 随着社交网络等应用的兴起,对大规模图数据进行查询和分析成为了近年来的热点研究问题。特别的,在大数据时代,面向图数据的分布式并行迭代处理任务面临着数据规模超大、结构动态演化、迭代高频多态和计算精度可控等方面的巨大挑战。本申请在充分调研现有并行迭代处理技术和分布式图数据管理技术局限性的基础上,计划围绕I/O高效和系统自适应的优化目标,针对数据划分、存储索引、数据分析和近似查询等关键优化技术展开深入的研究,提出可增量、可调整、可近似的并行迭代处理创新性解决方案,并实现一个面向复杂迭代计算的超大动态图数据管理原型系统。该研究对于开拓新型的分布式数据管理方法,推动大图处理领域的应用,发展我国大数据管理和分析的自主技术和产业,具有重要的理论意义和实际价值。
中文关键词: 图数据管理;图数据分析;图查询;分布式计算;大数据
英文摘要: With the rapid growth of the applications like social networks, queries and analysis over large-scale graph data become the hot research topic. Particularly, in the context of big data, distributed and parallel iterative processing tasks for graph data faces severe challenges in terms of very large data scale, dynamically evolving structures, high-frequency and multi-state iterations, and controllable computation precision. Based on the sufficient investigation of the exising parallel iterative processing and distributed graph data management techniques, with the goal of I/O efficent and self-adaptive optmization, the proposal aims to conduct in-depth studies on key techniques of data partition, storage and index, data analysis and approximate query. Novel solutions to incremetal, adjustable and approximate parallel iterative processing will be explored and a graph data management prototype system supporing complex iterative processing tasks will be implemented. This study is theoretically and practically significant to exploit new distributed data management schemes, to promote large graph processing applications, and to develop big data management and analysis techniques and industries of China.
英文关键词: graph data management;graph data analysis;graph query;distributed computing;big data