项目名称: 吡咯/吲哚基合成受体纳米功能化修饰电极及其电化学传感行为

项目编号: No.21275150

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 数理科学和化学

项目作者: 邵士俊

作者单位: 中国科学院兰州化学物理研究所

项目金额: 80万元

中文摘要: 基于仿生分子识别体系和纳米技术构建仿生传感分子探针和分子器件是当前分子识别及生物传感器领域活跃的研究方向。本项目结合吡咯/吲哚基受体对阴离子、氨基酸等生物分子识别作用的研究基础,以碳纳米材料为合成受体识别元件固定化载体,利用共价键合、吸附和分子自组装等化学和物理方法,设计制备吡咯/吲哚基合成受体纳米探针及其功能化修饰电极,利用各种谱学和电化学分析方法进行结构和理化性能表征。研究建立以有机无机阴离子、氨基酸等生物分子为目标分析物的识别与电化学传感体系;系统考察合成受体纳米功能化修饰电极的电化学传感行为;阐明电化学传感的固液界面体系中吡咯/吲哚基受体对目标分子的识别作用、构效关系及其作用机理;揭示界面识别过程中电化学信号响应机制及其调控因素。建立针对复杂体系中微量或痕量目标分析物高选择性富集、分离和快速高效检测的电化学分析方法,发展基于仿生分子识别体系的高灵敏高选择性合成受体电化学传感器。

中文关键词: 吡咯/吲哚基合成受体;碳纳米材料;修饰电极;电化学传感器;分子识别

英文摘要: It is an active research trend in the domain of current molecular recognition and biosensors to construct biomimetic molecular probes and molecular devices from the biomimetic molecular recognition systems combined with nanomaterials and nanotechnology. Based on our research works on the molecular recognition systems of pyrrole/indole-based receptors for anions, amino acids, etc., as well as the electrochemistry sensing properties of nanomaterials modified electrodes, several carbon-nanomaterials will be used to efficiently load pyrrole/indole-based synthetic receptors for the construction of the electrochemical sensors. In this research project, a series of novel pyrrole/indole-based modified nanomaterials and their functionalized electrodes will be designed and fabricated by physical adsorption, covalent immobilization, and self-assembly methods, and the structures and physical-chemical properties will be characterized systematically by various spectroscopic and electrochemical analysis methods. The electrochemistry sensing systems for organic/inorganic anions and amino acids, which play fundamental roles in biological, chemical, medical and environmental processes, will be established. The electrochemical sensing behavior of the modified electrodes will be investigated systematically. The mechanism of recogni

英文关键词: pyrrole/indole-based synthetic receptors;carbon-nanomaterials;modified electrodes;electrochemical sensors;molecular recognition

成为VIP会员查看完整内容
0

相关内容

ICLR 2022|化学反应感知的分子表示学习
专知会员服务
21+阅读 · 2022年2月10日
专知会员服务
43+阅读 · 2021年9月7日
专知会员服务
29+阅读 · 2021年8月27日
专知会员服务
33+阅读 · 2021年5月7日
专知会员服务
24+阅读 · 2021年3月18日
【KDD2020-阿里】可调控的多兴趣推荐框架
专知会员服务
29+阅读 · 2020年8月11日
准确率达 95%,机器学习预测复杂新材料合成
机器之心
1+阅读 · 2022年1月1日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
15+阅读 · 2020年2月6日
Arxiv
11+阅读 · 2018年3月23日
小贴士
相关VIP内容
ICLR 2022|化学反应感知的分子表示学习
专知会员服务
21+阅读 · 2022年2月10日
专知会员服务
43+阅读 · 2021年9月7日
专知会员服务
29+阅读 · 2021年8月27日
专知会员服务
33+阅读 · 2021年5月7日
专知会员服务
24+阅读 · 2021年3月18日
【KDD2020-阿里】可调控的多兴趣推荐框架
专知会员服务
29+阅读 · 2020年8月11日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员