项目名称: 利用超导人工电磁微结构的非线性产生可调谐窄带太赫兹信号的研究
项目编号: No.61501219
项目类型: 青年科学基金项目
立项/批准年度: 2016
项目学科: 无线电电子学、电信技术
项目作者: 张彩虹
作者单位: 南京大学
项目金额: 23万元
中文摘要: 电磁波在人工微结构中诱导谐波现象的研究一直是物理、材料界关心的热点、难点问题。近几年强太赫兹时域光谱技术的发展,使得对太赫兹波段超快和非线性现象的研究成为可能。本项目着力在国内建立世界水平的宽带及窄带强太赫兹时域光谱系统。借鉴光学波段的非线性谐波效应,在THz波段引入超导metamaterial,利用超导薄膜在强THz场(>100kV/cm)激励下的非线性效应,研究超导材料的非线性调谐特性,寻求非线性系数较高的超导材料,并利用其设计非线性效率较高的超导metamaterial结构,研究其产生中心频率在1-3 THz,调谐范围达上百GHz的窄带THz时域信号的机制和物理过程,该频率范围是电子学方法和量子级联激光技术较难达到的区域。本项目旨在通过对超导非线性metamaterial深入的理论和实验研究,掌握可调谐窄带THz信号产生的关键技术,扩展超导metamaterial在THz波段的应用。
中文关键词: 超导薄膜;强太赫兹场;太赫兹人工材料;二次谐波
英文摘要: Harmonic wave generation in metamaterial induced by electromagnetic wave is always attractive and difficult topic in physics, materials. As the development of intense terahertz (THz) time domain spectroscopy (TDS), it's becoming possible to study the ultrafast and nonlinear phenomena at THz region. The project is firstly to setup intense wideband and narrowband THz TDS which is advanced in the world. Then using the Harmonic generation principle in optical region for reference, superconducting metamaterial is introduced to THz region. Based on the nonlinear effects of superconducting thin film induced by intense THz filed (>100 kV/cm), we will study on the nonlinear response of superconducting material, and find suitable superconducting thin film having higher nonlinear coefficient, with which we will design and simulate superconducting metamaterial to get higher nonlinear efficiency of harmonics generation. Finally, we will using the superconducting metamaterial to get central frequency at 1-3 THz with tunable range up to to hundred GHz narrowband THz time source and study the physical process. This frequency range is hard to achieve by using electronic technology and quantum cascade laser. The project is to master the key technology of tunable narrowband THz time source, and extend the application of superconducting metamaterial at THz region by the theoretical and experimental study of above nonlinear superconducting metamaterial.
英文关键词: superconducting thin film;intense terahertz filed;terahertz metamaterial;second harmonic generation