项目名称: 光催化和表面增强拉曼双活性AgX/Ag复合纳米结构的构建及原位光催化过程研究

项目编号: No.21207144

项目类型: 青年科学基金项目

立项/批准年度: 2013

项目学科: 环境化学

项目作者: 刘睿

作者单位: 中国科学院生态环境研究中心

项目金额: 27万元

中文摘要: 银半导体/银(AgX/Ag)催化体系因其高稳定性和高可见光利用率而受到了研究者广泛的关注,有望成为传统光催化剂如TiO2的重要补充,但目前尚无制备高活性的小粒径AgX/Ag纳米颗粒的有效方法,且AgX/Ag对典型污染物的光降解过程及其本身在实际环境中的迁移转化过程尚不清楚。本项目拟利用Ag纳孔膜的结构特性和光学活性,构建具有高催化活性和高表面增强拉曼散射(SERS)活性的AgX/Ag复合纳孔膜;以此纳米结构作为研究平台,利用SERS技术原位研究多溴联苯醚和氯酚等典型持久性污染物的可见光催化降解行为,并结合DFT计算识别出反应中间产物,揭示降解途径,利用QSAR评估上述中间产物的毒性;考察主要环境因素对降解过程的影响,研究AgX/Ag纳米结构在环境条件下的迁移转化行为。项目的实施,可为安全、高效地将AgX/Ag纳米结构用于去除实际环境中的污染提供理论依据和数据积累。

中文关键词: 共振催化;表面增强拉曼光谱;原子构象;热电子;光催化

英文摘要: Due to its good stability and high solar-energy utilization, AgX/Ag nanocomposite-based visible-light photocatalyst has been given widespread research in recent years, especially in applications like environmental decontamination, and may become an important supplement to traditional photocatalysts like TiO2. However, the following concerns must be issued before using this new photocatalyst in real environment conditions: (i) devoloping an effective way to control the size of synthesized AgX/Ag nanocomposite, as the reported procedures only give birth to AgX/Ag nanocomposite with diameter larger than 100 nm; (ii) understanding the mechanism of typical environment pollutants degradation on AgX/Ag nanocomposite; and (iii) uncovering the environmental behaviors of AgX/Ag nanocomposite in real environment conditions, including their migration, transformation and fate. The aim of this study is to combining the photocatalytic activity of AgX/Ag nanocomposite, the surface enhanced Raman scattering (SERS) activity of Ag nanostructure, and the structural characteristics of Ag nanoporous film to fabricate AgX/Ag hybrid nanoporous films with both high photocatalytic activity and high SERS activity. The constructed AgX/Ag nanostructure will function as a research platform for in-situ SERS study of the photocatalytic degrad

英文关键词: Plasmonic catalysis;Surface enhanced Raman Scattering;Atomic geometry;Hot electron;Photocatalyst

成为VIP会员查看完整内容
0

相关内容

「知识蒸馏」最新2022研究综述
专知会员服务
121+阅读 · 2022年3月20日
专知会员服务
15+阅读 · 2021年10月11日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
28+阅读 · 2021年8月27日
专知会员服务
15+阅读 · 2021年8月10日
专知会员服务
85+阅读 · 2021年8月8日
专知会员服务
31+阅读 · 2021年5月7日
【KDD2020-阿里】可调控的多兴趣推荐框架
专知会员服务
28+阅读 · 2020年8月11日
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
39+阅读 · 2019年4月12日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月20日
The Importance of Credo in Multiagent Learning
Arxiv
1+阅读 · 2022年4月15日
Arxiv
25+阅读 · 2022年1月3日
Arxiv
28+阅读 · 2021年10月1日
Arxiv
12+阅读 · 2020年12月10日
小贴士
相关VIP内容
「知识蒸馏」最新2022研究综述
专知会员服务
121+阅读 · 2022年3月20日
专知会员服务
15+阅读 · 2021年10月11日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
28+阅读 · 2021年8月27日
专知会员服务
15+阅读 · 2021年8月10日
专知会员服务
85+阅读 · 2021年8月8日
专知会员服务
31+阅读 · 2021年5月7日
【KDD2020-阿里】可调控的多兴趣推荐框架
专知会员服务
28+阅读 · 2020年8月11日
相关资讯
相关基金
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员