项目名称: III族氮化物半导体材料与器件的辐照损伤的同步辐射X射线研究

项目编号: No.11275228

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 数理科学和化学

项目作者: 王焕华

作者单位: 中国科学院高能物理研究所

项目金额: 98万元

中文摘要: 2012年初俄罗斯的火星探测器因宇宙线辐射导致计算机系统失灵而失败,2011年日本福岛核电站事故因为辐射损伤而未能使用机器人来检查清理,这类事件表明,半导体材料和器件的抗辐照损伤能力对其在辐照环境中应用的可靠性和有效寿命至关重要。迄今相关研究主要是循着辐照试验-性能测试的研究路线来开展,而从直接观测(点)缺陷结构的角度来研究辐照损伤效应的工作很少见。为了从缺陷结构方面弄清III族氮化物半导体材料和器件的辐照效应,我们拟采用以同步辐射X射线漫散射为核心的X射线方法研究它们在不同辐照条件下点缺陷的产生、结构及其变化规律,测量出对应的宏观性能,找出辐照参数-缺陷结构-光电性能之间的对应关系。该研究将为宽禁带化合物半导体的缺陷理论发展提供新的实验线索,对理解和评估III族氮化物材料与器件的辐照损伤、提高其可靠性有重要的作用,也将为我国的空间用相关光电子器件及其辐射防护的设计提供基础依据。

中文关键词: 氮化物半导体;辐照损伤;黄昆漫散射;高分辨X射线衍射;点缺陷

英文摘要: In early 2012, Russia's Mars explorer suffered failure because of a computer malfunction caused by the impact of cosmic rays. During Fukushima nuclear crisis in Japan in 2011, intelligent robots failed to be sent into the nuclear power plant to handle the leakage due to the high-dose irradiation damage to the electronics. These sorts of events indicate the crucial role played by the anti-irradiation capability of semiconductor materials and devices on their dependability and effective lifetime. So far most studies have been carried out following a research route from irradiation experiment to performance measurment,and the studies from the standpoint of observing (point) defect structure are rare. In order to master irradiation effects on III-nitride semiconductor materials and devices, we propose to investigate the generation, structure and evolvement rules of defects under different irradiation conditions using synchrotron radiation x-rays methods mainly based on diffuse x-ray scattering and x-ray absorption fine structure spectroscopy, and to measure the corresponding optic and electric properties. This study is expected to reveal the irradiation parameters - - defect structure - - photoelectric properties relation. It would provide new clues for the defect theory development of wide-bandgap compound semic

英文关键词: Huang Scattering;High-Resulution XRD;point difects;Nitride semiconductor;Irradiation Damage

成为VIP会员查看完整内容
0

相关内容

《塑造2040年战场的创新技术》欧洲议会研究处,142页pdf
专知会员服务
89+阅读 · 2022年4月14日
自编码器导论,26页pdf
专知会员服务
41+阅读 · 2022年1月18日
中国AI+材料科学产业应用研究报告,41页pdf
专知会员服务
52+阅读 · 2021年12月6日
专知会员服务
51+阅读 · 2021年10月16日
专知会员服务
144+阅读 · 2021年6月10日
专知会员服务
31+阅读 · 2021年5月7日
我的信号是由核辐射传输的,金属屏蔽都挡不住
机器之心
0+阅读 · 2021年11月24日
最新研究表明:EV电池「越老越安全」
机器之心
0+阅读 · 2021年5月8日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
38+阅读 · 2019年4月12日
高分子材料领域的十大院士!
材料科学与工程
18+阅读 · 2018年9月18日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月20日
RIS-Assisted Cooperative NOMA with SWIPT
Arxiv
0+阅读 · 2022年4月18日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
15+阅读 · 2021年12月22日
小贴士
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
微信扫码咨询专知VIP会员