项目名称: 面向高性能云平台的并行程序优化关键技术研究

项目编号: No.61472201

项目类型: 面上项目

立项/批准年度: 2015

项目学科: 自动化技术、计算机技术

项目作者: 翟季冬

作者单位: 清华大学

项目金额: 84万元

中文摘要: 随着云计算的发展以及面向并行计算领域优化的高性能云平台的出现,越来越多的用户开始在高性能云平台上运行各种科学计算程序。但是,复杂的云平台计价模型、灵活的云资源配置模式、非定制的通信网络以及显著的系统噪音等因素给高性能云平台上运行大规模并行程序带来新的挑战。.针对上述问题,本项目研究工作包括:首先,提出面向高性能云平台的半弹性虚拟集群计算模型。通过聚合大量用户的作业请求,实现统一的云资源调度和管理,并根据作业规模动态调整虚拟集群大小,降低用户使用成本并提高作业运行效率。其次,提出基于学习排序的方法实现自动预测给定并行程序的最优云配置方案。针对云平台资源配置组合空间爆炸的问题,提出基于PB矩阵的统计方法对高维参数空间进行降维。最后,针对高性能云平台的特点,提出采用静态分析的技术实现并行程序的通信自动隐藏,以及基于性能断言的技术在线检测云平台上存在的系统噪音,提高并行程序的性能和可扩展性。

中文关键词: 高性能计算;云计算;并行程序;性能优化

英文摘要: With the development of cloud computing as well as the emergence of high performance computing cloud, more and more users begin to run a variety of parallel applications on such platforms. However, the complex cloud pricing models, flexible cloud resource allocation models, non-customized communication networks and significant system noise have brought new challenges to execute large-scale parallel applications on high performance cloud platforms. To solve these problems, this project focuses on the following points: First of all, we propose a semi-elastic virtual cluster computing model based on high performance computing cloud. Through aggregating the demands from multiple users, our system can achieve cloud resources provisioning with different types of reserved instances to optimize its overall cost effectiveness. It can also intelligently control the virtual cluster capacity and plan its resource distribution across different cloud pricing classes. Second, we propose utilizing learning-to-rank to perform black-box performance/cost predictions. To tackle the high-dimensional parameter exploration space unique to cloud platforms, we enable affordable, reusable, and incremental training guided by Plackett and Burman Matrices. Finally, according to the characteristics of high performance computing cloud, we propose using static analysis to automatically overlap communication and computation in parallel applications. We also propose using performance assertion to detect system noise on high performance computing cloud.

英文关键词: High Performance Computing;Cloud Computing;Parallel Programs;Performance Optimization

成为VIP会员查看完整内容
1

相关内容

云计算(Cloud computing)是一种基于互联网的计算方式,通过这种方式,共享的软硬件资源和信息可以按需提供给计算机和其他设备。整个运行方式很像电网,类似之前的网格计算。
军事知识图谱构建技术
专知会员服务
127+阅读 · 2022年4月8日
深度神经网络 FPGA 设计进展、实现与展望
专知会员服务
58+阅读 · 2022年3月26日
深度神经网络FPGA设计进展、实现与展望
专知会员服务
35+阅读 · 2022年3月21日
视频隐私保护技术综述
专知会员服务
35+阅读 · 2022年1月19日
面向端边云协同架构的区块链技术综述
专知会员服务
49+阅读 · 2021年12月24日
面向大数据处理框架的JVM优化技术综述
专知会员服务
17+阅读 · 2021年11月27日
专知会员服务
19+阅读 · 2021年5月16日
专知会员服务
79+阅读 · 2020年8月4日
云计算成本优化终极指南
AI前线
0+阅读 · 2022年2月14日
如何降低云计算基础设施的复杂度?
InfoQ
0+阅读 · 2022年1月4日
面向大数据处理框架的JVM优化技术综述
专知
0+阅读 · 2021年11月27日
云上应用系统数据存储架构演进
阿里技术
2+阅读 · 2021年9月1日
【数字孪生】数字孪生技术从概念到应用
产业智能官
91+阅读 · 2020年2月16日
面向云端融合的分布式计算技术研究进展与趋势
中国计算机学会
19+阅读 · 2018年11月27日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
27+阅读 · 2021年11月11日
UNITER: Learning UNiversal Image-TExt Representations
Arxiv
23+阅读 · 2019年9月25日
小贴士
相关VIP内容
军事知识图谱构建技术
专知会员服务
127+阅读 · 2022年4月8日
深度神经网络 FPGA 设计进展、实现与展望
专知会员服务
58+阅读 · 2022年3月26日
深度神经网络FPGA设计进展、实现与展望
专知会员服务
35+阅读 · 2022年3月21日
视频隐私保护技术综述
专知会员服务
35+阅读 · 2022年1月19日
面向端边云协同架构的区块链技术综述
专知会员服务
49+阅读 · 2021年12月24日
面向大数据处理框架的JVM优化技术综述
专知会员服务
17+阅读 · 2021年11月27日
专知会员服务
19+阅读 · 2021年5月16日
专知会员服务
79+阅读 · 2020年8月4日
相关资讯
云计算成本优化终极指南
AI前线
0+阅读 · 2022年2月14日
如何降低云计算基础设施的复杂度?
InfoQ
0+阅读 · 2022年1月4日
面向大数据处理框架的JVM优化技术综述
专知
0+阅读 · 2021年11月27日
云上应用系统数据存储架构演进
阿里技术
2+阅读 · 2021年9月1日
【数字孪生】数字孪生技术从概念到应用
产业智能官
91+阅读 · 2020年2月16日
面向云端融合的分布式计算技术研究进展与趋势
中国计算机学会
19+阅读 · 2018年11月27日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员