项目名称: 分子器件电输运过程中的局域热及制冷机制研究

项目编号: No.11264005

项目类型: 地区科学基金项目

立项/批准年度: 2013

项目学科: 数理科学和化学

项目作者: 蔡绍洪

作者单位: 贵州财经大学

项目金额: 50万元

中文摘要: 对基于分子材料的电子器件的设计需要对分子器件的导电机制进行的深入研究,它需要精确地描述纳米分子的空间和电子结构。非弹性遂穿光谱与表面增强拉曼光谱是对分子器件的微观结构进行探测的有效工具,它们同时也给分子器件的电输运过程增加了由非弹性散射与电磁辐射形成的局域热以及对分子器件制冷的必要性。针对这个问题,我们将在密度泛函理论与非平衡态格林函数理论的框架内,围绕分子器件的表面增强拉曼光谱与分子电导之间相互关联,分子传导过程中的电磁辐射机制以及分子结输运过程中的局域热产生的机制及制冷方案展开理论研究工作。在研究中建立计算非弹性遂穿光谱与表面增强拉曼光谱的统一框架,寻找到电导与拉曼响应之间的强关联的深层机制,找到分子器件输运过程中的局域热分布并对有害的局域热实施制冷,避免分子电路的熔断。这对设计与制造稳定的分子器件是十分必要的。

中文关键词: 分子器件;电输运;掺杂;非弹性隧穿谱;界面

英文摘要: The design of electronic devices based on molecular materials needs the understanding of the transport mechanism, which depend on the accurately describing of the conformation and electronic structure of the molecular devices. Inelastic Tunneling Spectroscopy (IETS) and Surface Enhanced Raman Spectroscopy (SERS) are the effective tools for probing the microstructure of the molecular devices, while they also bring the complexity of local heat introducing by inelastic scattering and photon adsorbing and the necessary of cooling. Aiming the key issues, the proposed project will investigate the correlation of the SERS and molecular conductance, the electromagnetism radiation mechanism in the molecular conducting process and the mechanism of the producing of local heat and cooling based on density functional theory and non- equilibrium Green's functional theory. These information will help us find the deeply mechanism of the strong correlation of molecular conductance and Ramon response. And it will help us get the distribution of local heat and cooling the harmful local heat in the transport process of molecular devices to avoid the fusing of molecular circuit. The project will play an important role for the start point for the design and assembling molecular devices.

英文关键词: molecular devices;electron transport;doping;inelastic electron tunneling spectroscopy;interface

成为VIP会员查看完整内容
0

相关内容

《塑造2040年战场的创新技术》欧洲议会研究处,142页pdf
专知会员服务
94+阅读 · 2022年4月14日
AAAI 2022 | ProtGNN:自解释图神经网络
专知会员服务
39+阅读 · 2022年2月28日
专知会员服务
103+阅读 · 2021年8月23日
【XAUTOML】可解释自动机器学习,27页ppt
专知会员服务
62+阅读 · 2021年4月23日
专知会员服务
29+阅读 · 2021年2月26日
【WWW2021】用优化框架解释和统一图神经网络
专知会员服务
44+阅读 · 2021年2月1日
【AAAI2021】图卷积网络中的低频和高频信息作用
专知会员服务
58+阅读 · 2021年1月6日
量子信息技术研究现状与未来
专知会员服务
39+阅读 · 2020年10月11日
你的哪类电子产品换新频率最高?
ZEALER订阅号
0+阅读 · 2022年1月11日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月15日
Arxiv
26+阅读 · 2018年2月27日
小贴士
相关VIP内容
《塑造2040年战场的创新技术》欧洲议会研究处,142页pdf
专知会员服务
94+阅读 · 2022年4月14日
AAAI 2022 | ProtGNN:自解释图神经网络
专知会员服务
39+阅读 · 2022年2月28日
专知会员服务
103+阅读 · 2021年8月23日
【XAUTOML】可解释自动机器学习,27页ppt
专知会员服务
62+阅读 · 2021年4月23日
专知会员服务
29+阅读 · 2021年2月26日
【WWW2021】用优化框架解释和统一图神经网络
专知会员服务
44+阅读 · 2021年2月1日
【AAAI2021】图卷积网络中的低频和高频信息作用
专知会员服务
58+阅读 · 2021年1月6日
量子信息技术研究现状与未来
专知会员服务
39+阅读 · 2020年10月11日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
微信扫码咨询专知VIP会员