项目名称: 基于异质结晶体硅太阳电池的a-SiOx:H薄膜生长和钝化机理研究
项目编号: No.61204005
项目类型: 青年科学基金项目
立项/批准年度: 2013
项目学科: 信息四处
项目作者: 张丽平
作者单位: 中国科学院上海微系统与信息技术研究所
项目金额: 30万元
中文摘要: 本课题用射频等离子体增强化学气相沉积法(RF-PECVD)制备氢化非晶硅氧(a-SiOx:H)薄膜,研究其在晶体硅表面的生长和钝化机理。首先,结合色度计监测的等离子体发光光谱、傅立叶红外光谱评价的薄膜微结构因子和椭偏光谱仪监测的薄膜光学参数,分析和评价发射极和背钝化层缓冲层(几个纳米厚的本征a-SiOx:H薄膜),获得薄膜微结构的有效评价机制。重点研究氧的逐渐融入对薄膜缺陷态和微结构的影响,以及对c-Si/i-a-SiOx:H界面能带匹配和界面缺陷态的影响,从而得出薄膜中的氧含量、界面能带匹配以及缺陷态之间的制约关系。然后,研究具有低吸收和高电导率的发射极p-a-SiOx:H薄膜和背钝化层n-a-SiOx:H薄膜对晶体硅表面的钝化作用,来提高光透过率和降低晶体硅表面的复合速率。本项目的研究,将为生长高质量a-SiOx:H薄膜钝化层及提高异质结晶体硅电池开路电压及转换效率提供理论基础。
中文关键词: 氢化非晶硅氧薄膜;表面钝化;界面处理;晶体硅异质结太阳电池;光学微结构表征
英文摘要: In this project, hydrogenated amorphous silicon oxygen (a-SiOx:H) thin films will be fabricated by radio frequency plasma enhanced chemical vapor deposition (RF-PECVD) technique. The growth and passivation mechanisms of the a-SiOx:H thin films for the crystalline silicon wafer will be investigated. First, the performance of intrinsic a-SiOx:H thin layers with a few nanometers, on front and rear-surfaces will be analyzed and evaluated by employing optical emission spectrum monitoring with colorimeter, microstructure factor measured by FTIR and optical parameters obtained by spectroscopic ellipsometry, so as to establish evaluation methods for a-SiOx:H thin films. The influence of the gradual incorporation of oxygen on the defect density and microstructure in the film as well as the bandgap matching and defects at c-Si/i-a-SiOx:H interface will be studied. These may achieve ideas to understand the optimal balance of oxygen content, interface bandgap matching and defect density. Next, p- and n-a-SiOx:H thin films with low absorption and high conductivity, which serve as the emitter and the rear-passivation layers, respectively, will be investigated to increase the optical transparency of incident light, to further reduce the recombination rate at the surface of c-Si. This research will supply theoretical issues for
英文关键词: Hydrogenated amorphous silicon oxygen thin film;Surface passivation;Interface treatment;Crystalline silicon heterojunction solar cell;Optical-microstructure characterization