项目名称: 太阳大气中等离子体电流的形成机制和不稳定性

项目编号: No.41304136

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 天文学、地球科学

项目作者: 陈玲

作者单位: 中国科学院紫金山天文台

项目金额: 25万元

中文摘要: 太阳爆发活动是空间天气现象的驱动源头。现代高分辨观测显示太阳大气、特别是日冕等离子体处于高度磁化的、非均匀和非平衡的动力学状态,而太阳活动现象正是太阳大气中磁场-等离子体相互作用导致磁能快速释放的结果。因此,太阳大气中局部等离子体电流系统的形成机制及其电动力学演化行为是我们进一步深入了解太阳活动现象、特别是其中能量转换与释放过程微观物理机制的关键因素。本项目计划从磁场-等离子体相互作用的微观物理过程出发,结合太阳高分辨观测有关太阳大气磁等离子体环境参数的分析,对太阳大气中局部等离子体电流的形成机制、电动力学演化行为、及其不稳定爆发特性等方面的问题进行深入研究,并提出相应的物理模型。这将为进一步开展建立太阳大气等离子体电流系统形成和演化过程完整物理模型的研究,深入系统地了解它们在太阳活动现象能量储存、转化和释放过程中的作用,揭示驱动太阳爆发现象的微观物理机制提供必要的理论模型。

中文关键词: 太阳大气;等离子体电流;能量转换;微观物理机制;

英文摘要: Solar eruptive activity is a driven source of space weather phenomena. The present-day high-resolution observations show that the solar atmosphere, especially the coronal plasmas are in a highly magnetized, non-uniform as well as non-equilibrium state in dynamics, and solar activity phenomenon is a result of magnetic energy rapid release due to magnetic-plasma interactions in solar atmospheres. Therefore, formation mechanisms and dynamical evolution behaviors of the local plasma currents system in the solar atmosphere play a key role for us to further understand the solar activity phenomena, especially the microphysical mechanism of their energy transformation and release process. In this project, based on the microphysical process of magnetic-plasma interactions and by use of the solar magneto-plasma parameters from high-resolution solar observations, we plan to study possible formation mechanisms of local plasma currents, their dynamical evolution behaviors, and instabilities driven by these plasma currents in the solar atmosphere. The aim of this project is to establish corresponding physical models for the produce, instability, and evolution of plasma currents in the solar corona. This project can provide necessary theory model for us to further investigate whole physical model of the formation and evolution

英文关键词: solar atmospheres;plasma currents;energy transformation;microphysical mechanisms;

成为VIP会员查看完整内容
0

相关内容

AAAI 2022 | ProtGNN:自解释图神经网络
专知会员服务
39+阅读 · 2022年2月28日
数字孪生城市白皮书(2021),47页pdf
专知会员服务
108+阅读 · 2021年12月24日
【NeurIPS 2021】基于潜在空间能量模型的可控和组分生成
专知会员服务
16+阅读 · 2021年10月23日
【WSDM2021】基于演化状态图的时间序列事件预测
专知会员服务
52+阅读 · 2020年12月1日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
研究实锤来了:困了又不睡,DNA易报废!
学术头条
1+阅读 · 2021年12月6日
Science:量子计算机成功创造时间晶体
学术头条
0+阅读 · 2021年11月20日
如何利用深度学习优化大气污染物排放量估算?
微软研究院AI头条
0+阅读 · 2021年8月31日
这期Nature封面「雪崩」了!
新智元
0+阅读 · 2021年1月16日
一文读懂Attention机制
机器学习与推荐算法
63+阅读 · 2020年6月9日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
15+阅读 · 2019年6月25日
Arxiv
12+阅读 · 2019年3月14日
Arxiv
26+阅读 · 2018年8月19日
Arxiv
25+阅读 · 2018年1月24日
小贴士
相关主题
相关VIP内容
AAAI 2022 | ProtGNN:自解释图神经网络
专知会员服务
39+阅读 · 2022年2月28日
数字孪生城市白皮书(2021),47页pdf
专知会员服务
108+阅读 · 2021年12月24日
【NeurIPS 2021】基于潜在空间能量模型的可控和组分生成
专知会员服务
16+阅读 · 2021年10月23日
【WSDM2021】基于演化状态图的时间序列事件预测
专知会员服务
52+阅读 · 2020年12月1日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
相关资讯
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员