项目名称: 托卡马克边缘区惰性气体杂质电荷转移过程的理论研究

项目编号: No.11305206

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 数理科学和化学

项目作者: 刘晓菊

作者单位: 中国科学院合肥物质科学研究院

项目金额: 20万元

中文摘要: 随着托卡马克高参数、长脉冲的运行,其第一壁材料的腐蚀问题日渐突出,边界和偏滤器区的辐射冷却至关重要。目前最有效的方法之一是注入中、高Z的惰性气体(如:Ne、Ar、Kr等)杂质以增强边界的辐射能力从而有效降低边界的温度。而目前国际上对于离子与中、高Z原子的电荷转移过程的研究工作较少且多集中在中、高能区。对于tokamak边界特征温度为0.1-500 eV的低能区,会涉及复杂的多中心电子关联问题。本项目将紧密结合当前实际需求,选取与tokamak边界和偏滤器辐射冷却密切相关的惰性气体体系,开展低能区的离子与中、高Z原子的碰撞过程的研究,包括单、双电子转移、转移激发和直接激发及其发射谱。本项目的开展不仅能填补这方面数据的空缺,同时在深入认识离子-原子碰撞涉及的多体碰撞动力学和电子关联效应基础上有助于我们深入理解惰性气体杂质对边界等离子体的影响(包括辐射冷却、脱靶的形成、杂质分布、氦灰中性化等)。

中文关键词: 电荷转移;分子轨道耦合;惰性气体;边界等离子体;辐射损失

英文摘要: Towards high performance and long pulse tokamak plasma, the divertor radiation cooling is much more important on reducing the increasingly severe erosion of plasma facing components.Inert gas with medium/high Z injection (eg. Ne, Ar, Kr) is one of the most effective way to enhance the radiation loss power and reduce the edge plasma temperature. However, so far, the study for the charge transfer processes of ion with medium/high Z atoms is scarce and most of them are focused on relatively high collisional energy region above 1 keV/amu. The complicated multi-center correlation interaction between multi-charged ions and neutrals bring a big challenge to the calculation of charge exchange occuring on tokamak edge plasma with the typical temperature 0.1-500 eV. For closely combining with the fusion research requirement, this project will carry out theoretical study of collisional processes between ion and medium/high Z atoms at low temperature region using the quantum-mechanical molecular orbit close coupling(MOCC)method, including single- double-electron transfer,transfer excitation and direct excitation and their spontaneous radiative spectrums. This project will supply the database to these area, and also it is very helpful to understand the influence of inert gas impurity seeding on edge plasma, including radiat

英文关键词: charge transfer;molecular orbit close coupling;inert gas;edge plasma;radiation loss

成为VIP会员查看完整内容
0

相关内容

《终端友好6G技术》未来移动通信论坛
专知会员服务
14+阅读 · 2022年4月15日
专知会员服务
21+阅读 · 2021年6月26日
专知会员服务
39+阅读 · 2021年5月12日
专知会员服务
31+阅读 · 2021年2月17日
DARPA可解释人工智能
专知会员服务
127+阅读 · 2020年12月22日
【哈佛经典书】概率论与随机过程及其应用,382页pdf
专知会员服务
61+阅读 · 2020年11月14日
从哈勃到韦伯,「宇宙之眼」是怎样炼成的?
流程工业数字孪生关键技术探讨
专知
1+阅读 · 2021年4月7日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
46+阅读 · 2021年10月4日
Arxiv
102+阅读 · 2020年3月4日
Arxiv
26+阅读 · 2018年8月19日
小贴士
相关主题
相关VIP内容
《终端友好6G技术》未来移动通信论坛
专知会员服务
14+阅读 · 2022年4月15日
专知会员服务
21+阅读 · 2021年6月26日
专知会员服务
39+阅读 · 2021年5月12日
专知会员服务
31+阅读 · 2021年2月17日
DARPA可解释人工智能
专知会员服务
127+阅读 · 2020年12月22日
【哈佛经典书】概率论与随机过程及其应用,382页pdf
专知会员服务
61+阅读 · 2020年11月14日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
微信扫码咨询专知VIP会员