项目名称: 基于亚像素补偿和视觉感知的超低码率压缩算法研究

项目编号: No.61303151

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 自动化技术、计算机技术

项目作者: 方璐

作者单位: 中国科学技术大学

项目金额: 28万元

中文摘要: 伴随着图像视频数据的海量化,我们急需解决海量数据的超低码率实时压缩问题,尤其在车船监控、犯罪监控等领域。现有压缩方法通常以牺牲细节内容来实现低码率,然而图像视频中重要细节往往对图像视频内容的理解起决定性的作用,比如监控视频中的文字信息等。本课题针对超低码率压缩下的严重细节丢失及重建复杂度较高的问题,研究基于亚像素补偿和视觉感知的新型超低码率压缩算法及应用平台。为增强图像视频中重要细节内容的视觉分辨率,本课题拟充分利用LCD上每个像素由3个独立空间可寻址的亚像素(红绿蓝)组成,通过自由控制组合相邻亚像素,结合人类视觉感知特性,增加在超低码率下的采样、压缩、复原中重建点数目;并通过研究亚像素级别的灰度细节与色度失真的频域特性,设计多通道自适应的超低码率压缩算法,有效的避免丰富细节内容的严重丢失。本课题通过上述研究,将实现一个高效实时的超低码率压缩平台,切实服务于海量高清数据的压缩、传输、显示。

中文关键词: 亚像素补偿;视觉感知;超低码率;超分辨;

英文摘要: With the emerging of big data for high resolution images and videos, an effective and efficient way to handle the super low bit-rate compression of big data is in high demand, particularly considering the big data in transportation monitoring , criminal surveillance, etc. existing algorithms usually achieve low bit-rate compression with the sacrifice of fine details. Nevertheless, quite a lot of fine details may be of vital importance for image/video contents understanding, such as the character information in surveillance videos. In this proposal, we are target to solve the two problems in super low bit-rate compression that "serious loss of fine details" and "superior high complexity in reconstruction", by proposing effective and efficient algorithms as well as the corresponding platforms based on subpixel rendering and visual perception. More specifically, we will take full advantage of the fact that each pixel in LCD consists of three independent space-addressable subpixels (red, green, blue), combine adjacent subpixels, and utilize the characteristics of human visual perception, to increase the individual reconstruction units during sampling, compression, restoration. Meanwhile, we will investigate the frequency-domain characteristics of apparent luminance details and color distortion in subpixel rendering,

英文关键词: Subpixel Rendering;Visual Perception;Low Bit-rate Compression;Super Resolution;

成为VIP会员查看完整内容
1

相关内容

【CVPR2022】多机器人协同主动建图算法
专知会员服务
48+阅读 · 2022年4月3日
【AAAI2022】基于渐进式增强学习的人脸伪造图像检测
专知会员服务
22+阅读 · 2022年1月19日
专知会员服务
8+阅读 · 2021年10月4日
专知会员服务
13+阅读 · 2021年9月13日
【WWW2021】 大规模组合K推荐
专知会员服务
44+阅读 · 2021年5月3日
【CVPR2021】探索图像超分辨率中的稀疏性以实现高效推理
专知会员服务
48+阅读 · 2021年4月15日
专知会员服务
15+阅读 · 2021年3月26日
专知会员服务
79+阅读 · 2020年12月6日
【CVPR2022】多机器人协同主动建图算法
专知
0+阅读 · 2022年4月3日
最全综述:基于深度学习的三维重建算法
极市平台
12+阅读 · 2020年3月17日
低清视频也能快速转高清:超分辨率算法TecoGAN
机器之心
13+阅读 · 2019年4月16日
人脸专集5 | 最新的图像质量评价
计算机视觉战队
27+阅读 · 2019年4月13日
深度学习之视频图像压缩
论智
13+阅读 · 2018年6月15日
一文读懂图像压缩算法
七月在线实验室
17+阅读 · 2018年5月2日
如何设计基于深度学习的图像压缩算法
论智
41+阅读 · 2018年4月26日
一文概览基于深度学习的超分辨率重建架构
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
25+阅读 · 2022年1月3日
Arxiv
16+阅读 · 2021年3月2日
小贴士
相关VIP内容
【CVPR2022】多机器人协同主动建图算法
专知会员服务
48+阅读 · 2022年4月3日
【AAAI2022】基于渐进式增强学习的人脸伪造图像检测
专知会员服务
22+阅读 · 2022年1月19日
专知会员服务
8+阅读 · 2021年10月4日
专知会员服务
13+阅读 · 2021年9月13日
【WWW2021】 大规模组合K推荐
专知会员服务
44+阅读 · 2021年5月3日
【CVPR2021】探索图像超分辨率中的稀疏性以实现高效推理
专知会员服务
48+阅读 · 2021年4月15日
专知会员服务
15+阅读 · 2021年3月26日
专知会员服务
79+阅读 · 2020年12月6日
相关资讯
【CVPR2022】多机器人协同主动建图算法
专知
0+阅读 · 2022年4月3日
最全综述:基于深度学习的三维重建算法
极市平台
12+阅读 · 2020年3月17日
低清视频也能快速转高清:超分辨率算法TecoGAN
机器之心
13+阅读 · 2019年4月16日
人脸专集5 | 最新的图像质量评价
计算机视觉战队
27+阅读 · 2019年4月13日
深度学习之视频图像压缩
论智
13+阅读 · 2018年6月15日
一文读懂图像压缩算法
七月在线实验室
17+阅读 · 2018年5月2日
如何设计基于深度学习的图像压缩算法
论智
41+阅读 · 2018年4月26日
一文概览基于深度学习的超分辨率重建架构
相关基金
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员