项目名称: 自组装超薄二维ZnO纳米片阵列的制备及光电性能研究

项目编号: No.61504041

项目类型: 青年科学基金项目

立项/批准年度: 2016

项目学科: 无线电电子学、电信技术

项目作者: 何冬青

作者单位: 黑龙江省科学院高技术研究院

项目金额: 20万元

中文摘要: 半导体ZnO电极材料的设计、合成是目前光电转换领域的研究重点。本项目提出通过简单、温和的水浴法或溶剂热法制备具有单层或几个原子层厚度的超薄ZnO纳米片,并将这种纳米片成功自组装到透明导电玻璃上,获得超薄二维ZnO纳米片阵列。利用SEM、TEM、UPS/XPS、PL等测试手段分析其物理化学性质,并结合反应过程参数总结其生长机理。利用稳态表面光电压谱和瞬态表面光伏技术探索超薄ZnO纳米片的形貌、表面性质等因素对其光生载流子传输性质的影响。此外,我们将这种兼具阵列的导向性、大比表面积和可能新颖的光电性质的超薄ZnO纳米片阵列作为光阳极应用于染料敏化太阳电池中,并探索这些因素对太阳电池光电转换效率的影响。这些研究为制备高光电转换效率的ZnO电极材料提供理论指导,对开发新型ZnO材料在催化、传感、柔性电子器件等领域的应用有重要的借鉴意义。

中文关键词: ZnO阵列;超薄二维纳米片;染料敏化太阳电池;瞬态光伏技术;电荷传输

英文摘要: Design and synthesis of ZnO electrode materials are the focus in the field of the photoelectric conversion. On the basis of our previous work, ultrathin two-dimensional ZnO nanosheets with monolayer or a few atomic layers thickness are directly prepared on the transparent conductive glass by chemical bath deposition or solvothermal method. Its physical and chemical properties are obtained by means of SEM、TEM、UPS/XPS、PL and so on. The influence of reaction process parameters on the morphology of the ultrathin ZnO nanosheets array will be studied, and then its growth mechanism can be summarized. The photoinduced charge transfer behaviors of ultrathin 2D ZnO nanosheets array are measured via the surface photovoltage and transient photovoltage technique, exploring the relationship between morphology of nanosheets and photoinduced charge transfer behaviors. In addition, we apply the ultrathin 2D ZnO nanosheets array as photoanode into DSSC. These factors such as array direction, large specific surface area and some novel photoelectric properties influence the photoelectric conversion efficiency. These studies can provide theoretical guidance for the preparation of ZnO electrode materials with higher power conversion efficiency. For developing new kinds of ZnO materials in fields of catalysis, sensing and flexible electronics, these studies also have very important significance.

英文关键词: ZnO array;ultrathin two-dimensional nanosheet;dye-sensitized solar cell;transient photovoltage;charge transfer

成为VIP会员查看完整内容
0

相关内容

数据价值释放与隐私保护计算应用研究报告,64页pdf
专知会员服务
39+阅读 · 2021年11月29日
专知会员服务
150+阅读 · 2021年9月25日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
12+阅读 · 2021年8月8日
专知会员服务
11+阅读 · 2021年7月16日
专知会员服务
31+阅读 · 2021年5月7日
【AAAI2021最佳论文】多智能体学习中的探索 - 利用
专知会员服务
35+阅读 · 2021年2月6日
【CVPR2020-港中文】 图像识别中的自注意力探索
专知会员服务
55+阅读 · 2020年4月29日
这期Nature封面「雪崩」了!
新智元
0+阅读 · 2021年1月16日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
57+阅读 · 2021年5月3日
Arxiv
11+阅读 · 2018年4月25日
小贴士
相关VIP内容
相关基金
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
相关论文
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
57+阅读 · 2021年5月3日
Arxiv
11+阅读 · 2018年4月25日
微信扫码咨询专知VIP会员