项目名称: 光子带隙结构调控稀土离子量子剪裁效应及其能量传递机制的研究

项目编号: No.51272097

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 一般工业技术

项目作者: 邱建备

作者单位: 昆明理工大学

项目金额: 80万元

中文摘要: 量子剪裁可以实现高能光子向多个低能光子的转化,其量子效率可接近200%。由于传统研究方法难以对其中的能量传递和发光行为进行有效调控,因此量子剪裁的实际发光效率不高,目前尚未在硅基太阳能电池上得到实用化。光子晶体可调节光子带隙结构中光的态密度变化以及材料与激发光的相互作用程度,实现光电材料中光物理过程和光电性质的调控,为调制量子剪裁发光的电子迁移中间过程提供了一种有效的研究方法。本项目拟通过溶胶-凝胶法制备具有量子剪裁效应的反蛋白石和复合蛋白石结构光子晶体,对其周期结构进行纳米尺度设计,通过光子晶体带隙调控稀土离子的吸收、激发状态以及自发辐射行为提高量子剪裁发光效率,进一步探索量子剪裁发光及其能量传递机制。本项目的实施将有助于认识材料结构与量子剪裁发光效率的关系,对于提高基质材料中稀土离子的受激效率、开发新型荧光粉材料及器件,提高硅基太阳能电池光电转化效率具有重要的理论和现实意义。

中文关键词: 量子剪裁;光子晶体;能量传递;稀土离子;带隙调制

英文摘要: In the so-called quantum-cutting process, a high-energy photon can be divided into two, or more, photons of lower energy, in which the quantum efficiency is up to 200%. Such manipulation of photon quantum size can then very effectively increase the overall efficiency of a device Recently, a new concept to further enhance the solar cell efficiency based on the light conversion mechanism has been proposed. Owing to the difficult to control the energy transfer between/among rare-earth ions and luminescence characteristics by traditional method, the external quantum efficiency of luminescence is very low which against the practical application in silicon-based solar battery. Since it is possible for photonic crystal to modulate the photonic state density of photonic band gap and the interaction between excitation light and materials, it will lead to the control of physical process and photoelectric properties of photoelectric materials, and it also provides an effective way to control the process of energy transfer in quantum cutting photoluminescence. In this study, the inverse opal and composite opal photonic crystals with quantum cutting effect are prepared by sol-gel method,and the periodic structure is designed in nano-scale. To further investigate the mechanisms of quantum cutting photoluminescence and energy

英文关键词: quantum cutting;photonic crystals;energy transfer;rare earth;bandgap modulation

成为VIP会员查看完整内容
0

相关内容

专知会员服务
51+阅读 · 2021年10月16日
专知会员服务
112+阅读 · 2021年9月22日
专知会员服务
55+阅读 · 2021年6月30日
专知会员服务
31+阅读 · 2021年5月7日
【哈佛经典书】概率论与随机过程及其应用,382页pdf
专知会员服务
61+阅读 · 2020年11月14日
量子信息技术研究现状与未来
专知会员服务
39+阅读 · 2020年10月11日
专知会员服务
49+阅读 · 2020年8月27日
【KDD2020-阿里】可调控的多兴趣推荐框架
专知会员服务
28+阅读 · 2020年8月11日
Science:量子计算机成功创造时间晶体
学术头条
0+阅读 · 2021年11月20日
这期Nature封面「雪崩」了!
新智元
0+阅读 · 2021年1月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2022年4月18日
Arxiv
19+阅读 · 2018年3月28日
小贴士
相关VIP内容
专知会员服务
51+阅读 · 2021年10月16日
专知会员服务
112+阅读 · 2021年9月22日
专知会员服务
55+阅读 · 2021年6月30日
专知会员服务
31+阅读 · 2021年5月7日
【哈佛经典书】概率论与随机过程及其应用,382页pdf
专知会员服务
61+阅读 · 2020年11月14日
量子信息技术研究现状与未来
专知会员服务
39+阅读 · 2020年10月11日
专知会员服务
49+阅读 · 2020年8月27日
【KDD2020-阿里】可调控的多兴趣推荐框架
专知会员服务
28+阅读 · 2020年8月11日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
微信扫码咨询专知VIP会员