项目名称: 团簇固溶的高化学稳定性导电Cu合金薄膜

项目编号: No.51271045

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 一般工业技术

项目作者: 李晓娜

作者单位: 大连理工大学

项目金额: 80万元

中文摘要: 铜是最佳导电材料之一,但较高的化学活性限制其许多应用。合金化无疑是有效解决方案,但提高化学稳定性的同时往往带来导电率急剧下降。本项目针对铜合金应用上亟待解决的合金化和导电率的共性矛盾问题,拟以多元合金化获得高化学稳定性和导电率的铜合金薄膜,选择合适的Cu-M1-M2合金体系,其中M1为与Cu和M2均互溶元素如Ni和Al,M2为与铜难互溶元素如Mo和N,M1和M2均优选可氮化元素,应用团簇加连接原子结构模型,实施精确的成分设计,利用磁控溅射制备薄膜,包括氮化处理,进而表征薄膜的热稳定性、化学稳定性与导电率,以最少的合金化总量,获得化学稳定性的最大提升和导电率的最少降低,考虑团簇种类、混合焓、原子尺寸、电子浓度等因素,理解合金元素降低化学反应活性的机理,最后根据确定的团簇结构模型,获得导电率与成分之间的关联,实现利用合金化尤其是氮化获得低化学反应活性和高导电率的铜合金薄膜。

中文关键词: 铜合金;化学稳定性;导电率;磁控溅射;薄膜

英文摘要: Copper is among the best electrical conductors but often suffers from high chemical activities. Alloying is undoubtedly an effective solution, but the improvement in chemical stabilities is usually conter-balanced by sharp conductivity losses. The present project aims at solving the common contradictories in alloying and condictivity for copper thin film alloys by multi-element alloying to reach simultaneously high chemical stabilities and electrical conductivities. Appropriate Cu-M1-M2 ternary alloys are chosen, where M1 is soluble with both base Cu and M2 such as Ni and Al, and M2 is immiscible with Cu such as Mo and N. Elements with high affinities for nitrogen are preferred for easy nitriding. The "cluster-plus-glue-atoms" structure model is introduced to design the ternary alloys in a precise manner. Magnetron sputtering is adopted to prepare copper alloy thin film and for in-situ nitriding. The films are characterized for thermal stability, chemical stability, and electrical conductivity, for the purpose of obtaining the largest improvement in chemical stability at the least expense of electrical conductivity, while using the minimal amounts of alloying elements. By considering cluster types, heat of mixing, atomic size, and valence electron numbers, the relevant mecahnism is explored. Finally, the relatio

英文关键词: copper alloy;chemical stability;conductivity;magnetron sputtering;thin film

成为VIP会员查看完整内容
0

相关内容

深度生成模型综述
专知会员服务
50+阅读 · 2022年1月2日
Nat. Mach. Intell. | 分子表征的几何深度学习
专知会员服务
24+阅读 · 2021年12月26日
专知会员服务
28+阅读 · 2021年8月27日
专知会员服务
24+阅读 · 2021年8月22日
专知会员服务
31+阅读 · 2021年5月7日
图表示学习在药物发现中的应用,48页ppt
专知会员服务
94+阅读 · 2021年4月30日
专知会员服务
68+阅读 · 2021年3月27日
专知会员服务
173+阅读 · 2020年11月23日
专知会员服务
28+阅读 · 2020年8月8日
2-3K 价位 65 英寸智能电视终极 PK,到底哪款更值得?
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
38+阅读 · 2019年4月12日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
RIS-Assisted Cooperative NOMA with SWIPT
Arxiv
0+阅读 · 2022年4月18日
Arxiv
0+阅读 · 2022年4月15日
Arxiv
24+阅读 · 2021年1月25日
Arxiv
11+阅读 · 2018年7月31日
小贴士
相关主题
相关VIP内容
深度生成模型综述
专知会员服务
50+阅读 · 2022年1月2日
Nat. Mach. Intell. | 分子表征的几何深度学习
专知会员服务
24+阅读 · 2021年12月26日
专知会员服务
28+阅读 · 2021年8月27日
专知会员服务
24+阅读 · 2021年8月22日
专知会员服务
31+阅读 · 2021年5月7日
图表示学习在药物发现中的应用,48页ppt
专知会员服务
94+阅读 · 2021年4月30日
专知会员服务
68+阅读 · 2021年3月27日
专知会员服务
173+阅读 · 2020年11月23日
专知会员服务
28+阅读 · 2020年8月8日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员