项目名称: ZnO/Zn2SiO4/SiO2微纳米复合核壳结构粉末粒子的抗辐照损伤机理及荧光发光机制研究

项目编号: No.11275054

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 数理科学和化学

项目作者: 李春东

作者单位: 哈尔滨工业大学

项目金额: 80万元

中文摘要: ZnO热控涂层是各类航天器广泛采用的重要热控材料,其在空间环境作用下的稳定性高低,直接影响航天器各有效载荷的工作状态和使用寿命。我们已经证明了在空间辐照因素的电离效应和位移效应作用下,ZnO中形成的各种不同电离状态的点缺陷(色心),如氧空位、氧填隙、锌空位和锌填隙等,是造成ZnO辐照损伤的根本原因。同时发现了不同形貌和粒径的ZnO粉末粒子的辐照损伤规律,并采用固相法首次实现了在气相法ZnO粉体表面连续生长梯度过渡的Zn2SiO4和SiO2纳米核壳结构,有效改善了ZnO的光学性能和抗辐照能力。本项目拟进一步通过在对ZnO粉体形貌和粒径进行可控生长的基础上,原位构筑Zn2SiO4和SiO2梯度过渡的纳米核壳结构。通过模拟空间辐照试验阐释其微纳米核壳结构的界面态及纳米壳层的抗辐照损伤机理及其荧光发光机制,为材料辐照损伤的表面与界面行为、纳米改性机制和ZnO荧光发光起源提供更充分的科学依据。

中文关键词: ZnO;核壳结构;辐照损伤;荧光;纳米

英文摘要: ZnO based thermal control coating is widely used in various types of spacecraft for more than half a century. The behavior of thermal control coatings in orbit is an important factor affecting the durability of thermal control systems in spacecraft. Our previous works demonstrated that the main reason of radiation damage in ZnO can be attributed to the formation of various different charged point defects (color centers) and its complex, such as VO, Oi, Zni, VZn, et al., induced by ionization effect and displacement effect under space environment irradiation. We also obtained morphology dependent and size dependent radiation damage rules of ZnO particles. A nanoscaled core-shell structure with Zn2SiO4 and SiO2 gradient transition layers that clad on the ZnO powders was successfully fabricated for the first time, by using a solid phase method, which greatly improved the optical properties and radiation stability of ZnO pigments. Based on a further study of morphology and size controllable growth of ZnO, the present project is planned to construct the in-situ nanoscaled core-shell structure with Zn2SiO4 and SiO2 gradient transition layer. The enhancement radiation mechanisms of radiation-stability for the core-shell structure is to be studied by simulating space irradiation experiments, the surface and interface st

英文关键词: ZnO;Core - shell structure;Radiation damage;luminescence;nano

成为VIP会员查看完整内容
0

相关内容

《深度学习中神经注意力模型》综述论文
专知会员服务
112+阅读 · 2021年12月15日
【经典书】凸优化:算法与复杂度,130页pdf
专知会员服务
80+阅读 · 2021年11月16日
【NeurIPS 2021】基于潜在空间能量模型的可控和组分生成
专知会员服务
15+阅读 · 2021年10月23日
专知会员服务
28+阅读 · 2021年8月27日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
60+阅读 · 2021年2月22日
专知会员服务
94+阅读 · 2020年12月8日
MIT科学家制造了量子龙卷风
机器之心
0+阅读 · 2022年1月14日
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
高分子材料领域的十大院士!
材料科学与工程
18+阅读 · 2018年9月18日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
13+阅读 · 2021年5月25日
Arxiv
11+阅读 · 2018年10月17日
小贴士
相关VIP内容
《深度学习中神经注意力模型》综述论文
专知会员服务
112+阅读 · 2021年12月15日
【经典书】凸优化:算法与复杂度,130页pdf
专知会员服务
80+阅读 · 2021年11月16日
【NeurIPS 2021】基于潜在空间能量模型的可控和组分生成
专知会员服务
15+阅读 · 2021年10月23日
专知会员服务
28+阅读 · 2021年8月27日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
60+阅读 · 2021年2月22日
专知会员服务
94+阅读 · 2020年12月8日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
微信扫码咨询专知VIP会员