项目名称: 基于免疫蚁群优化模型的多源遥感湿地精细分类知识发现
项目编号: No.41301465
项目类型: 青年科学基金项目
立项/批准年度: 2014
项目学科: 天文学、地球科学
项目作者: 李华朋
作者单位: 中国科学院东北地理与农业生态研究所
项目金额: 25万元
中文摘要: 湿地复杂的环境梯度(空间变异性高)和相似的背景信息(下垫面湿润),决定了实现植被群落尺度的湿地遥感精细分类须满足以下条件:使用高空间分辨率遥感数据;综合使用多源数据,增加湿地观测信息维;开拓新颖的能兼容高维多源数据的信息处理方法。 因此,本研究拟选择湿地植被群落类型丰富的洪河自然保护区为实验区,以高分辨率多源数据(包括多平台光学遥感、微波遥感、地形信息以及GIS辅助数据等)为基础,将空间数据挖掘领域热点的人工蚁群方法引入遥感数据分类与信息提取中,并在蚁群的控制管理部分引入免疫控制机制,构建人工免疫蚁群系统,通过反复实验测试与精度验证,从高维数据中遴选最优属性组合,充分挖掘多源数据所蕴藏的湿地光谱、辐射、散射、纹理及空间地理分布特征,构建基于免疫蚁群优化模型的、能兼容多源数据的复杂地物遥感精细分类识别理论方法与技术体系。本研究丰富了湿地遥感分类方法,将具有重要的科学意义与实际应用价值。
中文关键词: 遥感影像分类;数据挖掘;蚁群优化;人工智能;数据降维
英文摘要: Because of the complex environmental gradients (highly spatial variability) and the similar background characteristics (humid underlying surface) of wetland, remote sensing (hereafter RS) image classification of wetland at plant community scale must meet the following conditions: (1) utilize high spatial resolution RS data; (2) employ multisource data to improve information dimension of wetland observation; (3) explore novel classification methods which can effectively integrate high dimension multisource data. Considering the previous issues, this project designs the following study contents: firstly, select Honghe National Nature Reserve (with plenty of wetland plant communities) as study area, and employ high spatial resolution multisource data (including multi-platform optical RS, microwave RS, terrain information and GIS ancillary data) as data sources; secondly, introduce current research focus of spatial data mining field -- artificial ant colony method to RS data classification and information extraction field, and introduce immune mechanisms to control and management component of artificial ant colony system to establish an artificial immune inspired ant colony system (AIACS) with powerful data mining ability; finally, utilize AIACS to search the optimal feature subset from high dimension data through i
英文关键词: remote sensing image classification;data mining;ant colony optimization;artificial intelligence;data reduction