项目名称: 石墨相氮化碳/量子点异质结的可控制备及其光伏性能研究

项目编号: No.21363027

项目类型: 地区科学基金项目

立项/批准年度: 2014

项目学科: 物理化学

项目作者: 庞起

作者单位: 广西大学

项目金额: 25万元

中文摘要: 共轭聚合物/量子点太阳能电池兼具聚合物柔性、重量轻的特点和量子点带隙可调、多激子效应的特点而具有巨大的发展潜力,成为研究热点。本项目拟设计和制备能级匹配的石墨相氮化碳共轭聚合物/量子点异质结太阳能电池材料,并研究其光伏特性。石墨相氮化碳具有半导体结构,价格低廉,易进行化学修饰,化学与热稳定性高等特性,采用石墨相氮化碳作为聚合物电池新型受体,与无机半导体量子点直接键合形成异质结,既可使量子点不团聚,又可以促进光生电子-空穴的分离,减少他们的复合,从而有效提高光电转换效率,同时可以克服量子点电池的不稳定性。本项目将系统研究制备方法、条件对异质结结构的影响,探讨异质结形成机理,实现g-C3N4/量子点异质结微结构的可控制备。研究太阳能电池光电子的产生、分离、传输以及光电转换机理,揭示异质结电池的光伏特性与微结构的关系,建立相应的光电导模型。为潜在的高效低廉光伏电池的应用开发提供理论和实验基础。

中文关键词: 石墨相氮化碳;量子点;异质结;太阳能电池;光伏性能

英文摘要: Polymer/inorganic semiconducting quantum dots take advantage of the rich optoelectronic properties of polymers as well as the size and shape dependent band gaps of quantum dots semiconducting nanomaterials. As a result, polymer/inorganic semiconducting quantum dots exhibit high carrier mobilities as well as an increase in the range of light absorption. Here,we design and controllable synthesize the heterojunction of graphitic carbon nitride / Quantum dots and study theirs the photovoltaic performance as active layer.Polymeric carbon nitride is a typical semiconductor with a band gap of 2.7 eV, as revealed by theoretical calculations. Properties such as a low price, amenability to mass preparation and chemical modification, and especially, contrary to many other organic semiconductors, a high thermal and chemical stability against oxidation stable in air up to 550 o C, make carbon nitride solids a very promising candidate for solar energy converting systems, such as photoelectrochemical cells, which are not yet available. The processing condition of forming heterojunction was optimized and its reaction mechanism was also studied. The photovoltaic performance of solar cell is strongly dependent on the light harvesting, energy levels of materials, the morphology of heterojunction films, the g- C3N4 structure, the

英文关键词: graphitic carbon nitride;quantum dot;Heterojunct;solar cell;photovoltaic performance

成为VIP会员查看完整内容
0

相关内容

中国能源体系 碳中和路线图,254页pdf
专知会员服务
76+阅读 · 2022年3月23日
专知会员服务
15+阅读 · 2021年6月6日
专知会员服务
31+阅读 · 2021年5月7日
百页Python编程指南
专知会员服务
68+阅读 · 2021年2月16日
专知会员服务
51+阅读 · 2020年12月28日
【NeurIPS2020】可靠图神经网络鲁棒聚合
专知会员服务
19+阅读 · 2020年11月6日
微软发布量子计算最新成果,证实拓扑量子比特的物理机理
微软研究院AI头条
0+阅读 · 2022年3月18日
专家观点 I 方振雷博士:光电建材的发展
光伏专委会CPVS
0+阅读 · 2022年3月14日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
1+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月19日
Self-Driving Cars: A Survey
Arxiv
41+阅读 · 2019年1月14日
小贴士
相关VIP内容
中国能源体系 碳中和路线图,254页pdf
专知会员服务
76+阅读 · 2022年3月23日
专知会员服务
15+阅读 · 2021年6月6日
专知会员服务
31+阅读 · 2021年5月7日
百页Python编程指南
专知会员服务
68+阅读 · 2021年2月16日
专知会员服务
51+阅读 · 2020年12月28日
【NeurIPS2020】可靠图神经网络鲁棒聚合
专知会员服务
19+阅读 · 2020年11月6日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
微信扫码咨询专知VIP会员