项目名称: 有机单分子膜在金属及金属氧化物表面吸附规律的研究

项目编号: No.21303068

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 数理科学和化学

项目作者: 孔垂鹏

作者单位: 吉林大学

项目金额: 25万元

中文摘要: 有机单分子膜在无机基质表面吸附行为是表面化学研究的前沿重点问题。传统的实验表征方法难以反映单分子膜吸附的精细结构。本项目拟通过计算化学的研究方法,结合实验结果,研究有机单分子膜在金属和金属氧化物表面的吸附,力求从微观尺度深入理解有机分子的吸附方式,为合成有特异性功能的表面镀膜材料提供全面细致的理论预测。本项目首先拟应用量子化学计算方法得到准确的有机分子-金属(金属氧化物)相互作用,通过数学拟合得出相应的分子力场中描述原子间相互作用的参数;进而应用得到的分子力场参数模拟纳米尺度的有机单分子膜-无机基质体系,通过和已有实验结果进行对比验证分子力场的准确性。拟将分子动力学方法与DFT及从头算分子动力学法联合使用,可以对材料的特殊性质进行研究。最后拟通过将所得到的分子力场参数进行归纳总结,编写出适用于模拟有机分子-无机物界面体系的,界面友好,易于操作的分子动力学软件程序包。

中文关键词: LB膜;金属;金属氧化物;分子力场参数;量子化学计算

英文摘要: Adsorption behavior of organic monolayer on inorganic surface has been an important novel focus in surface chemistry. There have been difficulties in analyzing the detailed structure with conventional experimental methods. In this project, the adsorption behavior of organic monolayer on metal or metal oxide surface has been comprehensively investigated. By comparing with experimental results, the adsorbing configuration of organic molecules has been studied from the microcosmic view. The project can provide comprehensive prediction for synthesizing surface coating materials with specific functions. In this project, the accurate calculated interactions between an organic molecule metal (metal oxide) atoms will be obtained with quantum chemistry method first. After that, these results will be used to couple the parameters describing atoms interactions in the corresponding molecular force field. Consequently, the coupled force field parameters will be applied to simulate nano-scale organic monolayer and inorganic substrate system. The accuracy of coupled force field parameters is verified by comparing the simulation results with experiments. Combining DFT and ab initio molecular dynamic method, the classic molecular dynamics can be used to study unique properties of monolayer system. At last, a classic molecular dy

英文关键词: LB monolayer;metal;metal oxide;force field parameter;quantum chemistry calculation

成为VIP会员查看完整内容
0

相关内容

ICLR 2022|化学反应感知的分子表示学习
专知会员服务
20+阅读 · 2022年2月10日
Nat. Mach. Intell. | 分子表征的几何深度学习
专知会员服务
24+阅读 · 2021年12月26日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
28+阅读 · 2021年8月27日
专知会员服务
31+阅读 · 2021年5月7日
【经典书】线性代数元素,197页pdf
专知会员服务
55+阅读 · 2021年3月4日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月18日
The Importance of Credo in Multiagent Learning
Arxiv
1+阅读 · 2022年4月15日
Adversarial Transfer Learning
Arxiv
12+阅读 · 2018年12月6日
小贴士
相关VIP内容
ICLR 2022|化学反应感知的分子表示学习
专知会员服务
20+阅读 · 2022年2月10日
Nat. Mach. Intell. | 分子表征的几何深度学习
专知会员服务
24+阅读 · 2021年12月26日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
28+阅读 · 2021年8月27日
专知会员服务
31+阅读 · 2021年5月7日
【经典书】线性代数元素,197页pdf
专知会员服务
55+阅读 · 2021年3月4日
相关资讯
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
相关论文
微信扫码咨询专知VIP会员