项目名称: 掺杂的稀土氧化物非晶态纳米管可控制备及其热电性能研究

项目编号: No.51472001

项目类型: 面上项目

立项/批准年度: 2015

项目学科: 一般工业技术

项目作者: 袁孝友

作者单位: 安徽大学

项目金额: 83万元

中文摘要: 热电材料在热能与电能相互转化方面具有重大应用前景。本项目在热电材料体系、材料结构和材料维度上全新设计,围绕提高热电材料电导率、增大Seebeck系数、降低热导率、提高热电优值(ZT)开展研究。以有序多孔阳极氧化铝膜为模板,用负压抽滤法可控制备掺杂的稀土氧化物非晶态纳米管并研究其热电性能。研究反应物浓度、反应时间、抽滤负压等对纳米管结构的影响;研究掺杂离子种类、价态、含量与稀土氧化物纳米管电导率之间关系;研究掺杂对半导体稀土氧化物纳米管带隙、载流子浓度的影响,并找出电导率和Seebeck系数之间优化组合;研究掺杂对稀土氧化物非晶态纳米管的电子热导、声子热导和晶格热导的影响,利用纳米管量子限域效应,使电子输运受限,降低电子导热,以纳米管管状结构增大声子散射,降低声子热导,以非晶态结构减小晶格热导,协同降低材料热导率;优选出电导率高、Seebeck系数大、热导率低、稳定性好、ZT值高的热电材料。

中文关键词: 掺杂;稀土氧化物;非晶态纳米管;可控合成;热电材料

英文摘要: There are important applications of thermoelectric material in the field of conversion between heat energy and electricity energy. The thermoelectric materials system, the material structure and the material dimension have been all redesigned based on increasing the conductivity, increasing the seebeck coefficient, decreasing the thermoconductivity and increasing the ZT value of thermoelectric material in this proposal. The amorphous rare earth doped oxide nanotube will be rational synthesized in the porous anodic aluminum oxide (AAO) template using the suction filteration at subatmospheric pressure,and the performances of thermoelectric material will be studied. The parameters of reactant concentration, reaction time, and subatmospheric suction filtration will be used to adjust the structure of nanotube in the nanopores of AAO. The conductivity of rare earth oxide nanotube is related to the doping ions, the valence of doping ion and the contant of doping ion, and they will be discussed. The band gap of rare earth oxide nanotube and the carrier concentration are influenced by doping and they will be as well as studied to find out the optimization combination between the conductivity and the seebeck coefficient. The electronic thermal conductivity, the phonon thermal conductivity and the lattice thermal conductivity of the amorphous rare earth oxide nanotube will be influened due to doping and it will be researched. The electronic thermal conductivity will be decreased due to the quantum confinement effect to limit the electrons electron transport, and the phonon thermal conductivity and the lattice thermal conductivity will be decreased respectively, due to the phonon scattering and the amorphous nanotube structure. It is the cooperative actions that it makes the thermal conductivity of the material decrease. The thermoelectric material of high ZT and good heat stability will be found out.

英文关键词: doping;rare earth oxide;amorphous nanotube;rational synthesis;thermoelectric material

成为VIP会员查看完整内容
0

相关内容

【NeurIPS 2021】基于潜在空间能量模型的可控和组分生成
专知会员服务
16+阅读 · 2021年10月23日
专知会员服务
28+阅读 · 2021年8月27日
专知会员服务
44+阅读 · 2021年8月5日
专知会员服务
15+阅读 · 2021年6月6日
专知会员服务
44+阅读 · 2021年5月24日
专知会员服务
31+阅读 · 2021年5月7日
百页Python编程指南
专知会员服务
68+阅读 · 2021年2月16日
专知会员服务
42+阅读 · 2021年2月8日
专知会员服务
45+阅读 · 2020年11月13日
Jetpack Compose 1.1 现已进入稳定版!
谷歌开发者
0+阅读 · 2022年3月7日
你的哪类电子产品换新频率最高?
ZEALER订阅号
0+阅读 · 2022年1月11日
这期Nature封面「雪崩」了!
新智元
0+阅读 · 2021年1月16日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
39+阅读 · 2019年4月12日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
【材料课堂】EBSD晶体学织构基础及数据处理
材料科学与工程
34+阅读 · 2018年7月14日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Building Odia Shallow Parser
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
28+阅读 · 2021年10月1日
Arxiv
17+阅读 · 2020年11月15日
Self-Driving Cars: A Survey
Arxiv
41+阅读 · 2019年1月14日
小贴士
相关VIP内容
【NeurIPS 2021】基于潜在空间能量模型的可控和组分生成
专知会员服务
16+阅读 · 2021年10月23日
专知会员服务
28+阅读 · 2021年8月27日
专知会员服务
44+阅读 · 2021年8月5日
专知会员服务
15+阅读 · 2021年6月6日
专知会员服务
44+阅读 · 2021年5月24日
专知会员服务
31+阅读 · 2021年5月7日
百页Python编程指南
专知会员服务
68+阅读 · 2021年2月16日
专知会员服务
42+阅读 · 2021年2月8日
专知会员服务
45+阅读 · 2020年11月13日
相关资讯
Jetpack Compose 1.1 现已进入稳定版!
谷歌开发者
0+阅读 · 2022年3月7日
你的哪类电子产品换新频率最高?
ZEALER订阅号
0+阅读 · 2022年1月11日
这期Nature封面「雪崩」了!
新智元
0+阅读 · 2021年1月16日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
39+阅读 · 2019年4月12日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
【材料课堂】EBSD晶体学织构基础及数据处理
材料科学与工程
34+阅读 · 2018年7月14日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员