项目名称: 超薄类金刚石膜包裹金属纳米颗粒释放的表面等离激元电场增强TiO2光催化效应研究

项目编号: No.11304159

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 数理科学和化学

项目作者: 谌静

作者单位: 南京邮电大学

项目金额: 30万元

中文摘要: 目前研究表明,较厚介电层包裹金属微纳结构的表面等离激元最强电场主要局域在介电层内,使得位于其附近光学过程(如TiO2光催化)的增强效率较低。本项目基于Mie散射理论解析解方法深入研究金属纳米颗粒尺寸、成分、介电包裹层成分及厚度等参数对金属纳米颗粒释放场的影响,从而给出清晰的物理图像。重点研究超薄类金刚石(Diamond-like Carbon,DLC)介电薄膜包裹金属纳米颗粒的表面等离激元特性,优化设计介电层的厚度,使之能实现对金属纳米颗粒局域电场的最大释放;在此基础上制备一些性能优异的新颖核壳纳米颗粒有序阵列等离激元TiO2光催化剂,用其研究在紫外及可见光波段的光降解效率。结合大量的实验数据研究表面等离激元光催化剂的紫外及可见光的光催化机理,给出TiO2光催化清晰的物理图像。

中文关键词: 表面等离激元;金属纳米结构;超薄介质膜;TiO2光催化;

英文摘要: The present studies show that the strongest plasmonic electric field of metallic nanostructures under the thick dielectric coating is mainly confined within the dielectric layer, which has lowered efficiency enhancement of many optical processes (such as the TiO2 photocatalysis) occuring in the vicinity of the metallic nanostructures. Based on the Mie scattering theory analytical solution, this project is to study the effect of metallic nanoparticle size, composition, dielectric coating composition and thickness on plasmonic electric field releasing of metallic nanoparticles, and thus outlines a clear physical picture. This project focuses on surface plasmon properties of ultrathin diamond-like carbon (DLC) films coated metallic nanoparticles and designing the optimized thickness of the dielectric layer to realize the maximum releasing of localized electric field of metallic nanoparticles. On the basis of the above analysis, some excellent novel TiO2 plasmonic photocatalysts with ordered arrays of core-shell nanoparticles will be prepared to study their photocatalytic degradation efficiency under ultraviolet and visible light. Finally, the photocatalysis mechanism of plasmonic photocatalysts under ultraviolet and visible light will be elucidated with numerous experimental data, giving us a clear physical picture

英文关键词: Surface Plasmons;Metallic Nanostructures;Untrathin Dielectric Film;TiO2 Photocatalysis;

成为VIP会员查看完整内容
0

相关内容

【AAAI2022】用于视觉常识推理的场景图增强图像-文本学习
专知会员服务
49+阅读 · 2021年12月20日
【博士论文】基于深度学习的单目场景深度估计方法研究
数据价值释放与隐私保护计算应用研究报告,64页pdf
专知会员服务
40+阅读 · 2021年11月29日
专知会员服务
43+阅读 · 2021年9月7日
专知会员服务
33+阅读 · 2021年5月7日
【AAAI2021】可解释图胶囊网络物体检测
专知会员服务
29+阅读 · 2021年1月4日
这期Nature封面「雪崩」了!
新智元
0+阅读 · 2021年1月16日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月19日
RIS-Assisted Cooperative NOMA with SWIPT
Arxiv
0+阅读 · 2022年4月18日
小贴士
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员