项目名称: 湿滑条件下仿蝾螈脚掌微结构的弹性体足垫壁面粘附机理研究

项目编号: No.51305425

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 机械、仪表工业

项目作者: 于海武

作者单位: 中国科学院合肥物质科学研究院

项目金额: 25万元

中文摘要: 仿生粘附技术的出现,使得爬壁机器人对壁面材料及形状变化具有了更好的适应能力。然而目前研究较多的仍集中于刚毛型仿生粘附技术,且该技术在湿滑条件下的粘附能力尚未得到验证,在一定程度上限制了其应用范围。本项目借鉴蝾螈脚掌微结构能够使其在湿滑垂直表面爬行的特点,提出从摩擦以及薄膜吸附两个层面,深入研究湿滑条件下弹性体仿生微结构化足垫壁面粘附机理,揭示微结构剪切/压缩变形、微结构化表面浸润性、微结构形状及尺寸特征、以及壁面粗糙度大小及形式对粘附特性的影响规律,建立基于上述研究成果的多效应协同作用粘附力模型,提出在湿滑条件下,以增强壁面粘附力为目的的弹性体微结构化足垫设计与优化方案,并开展相关试验验证。项目的研究成果将对仿生粘附技术的发展及其在爬壁机器人上的应用起到积极的推动作用。

中文关键词: 弹性体;微结构;仿生粘附;摩擦;薄膜吸附

英文摘要: Biomimetic adhesion technology have given wall climbing robot a better ability to adapt varied wall surface material and shape. At present, however, the most research on biomimetic adhesion technology focus on the setae biomimetic adhesion technology, but the adhesive ability under wet and slip conditions were not been proved, so the field of application is finite. This topic will study the newt foot microstructure which can make it unobstructed creep on the vertical surface of the glass under wet and slip conditions, and present to research the wall surface adhesive mechanism of biomimetic newt microstructured elastomer foot pad deeply at two facets of friction and film getter, reveal influence law on adhesion property brought by shear/compress of microstructure, the wettability of microstructured surface, the shape and size character of microstructure, and the roughness size and form of wall surface, develop the adhesive model which considering a variety of effects. On the basis of model above, obtain the designing and optimizing scheme to strengthen the adhesive property of microstructured foot pad. Meanwhile, the tests will be carried out to confirm the designing scheme. The achievement of this research will push forward the development of biomimetic adhesion technology and application on the wall climbing r

英文关键词: Elastomer;Microstructure;Biomimetic adhesion;Friction;Film adsorption

成为VIP会员查看完整内容
0

相关内容

《5G 毫米波赋能 8K 视频制作》未来移动通信论坛
专知会员服务
11+阅读 · 2022年4月15日
专知会员服务
31+阅读 · 2021年7月25日
专知会员服务
36+阅读 · 2021年7月17日
专知会员服务
32+阅读 · 2021年7月1日
专知会员服务
31+阅读 · 2021年5月7日
MIT《图神经网络的任务结构与泛化》,22页ppt
专知会员服务
23+阅读 · 2021年2月28日
专知会员服务
84+阅读 · 2020年12月11日
专知会员服务
45+阅读 · 2020年11月13日
【GitHub实战】Pytorch实现的小样本逼真的视频到视频转换
专知会员服务
35+阅读 · 2019年12月15日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月20日
RIS-Assisted Cooperative NOMA with SWIPT
Arxiv
0+阅读 · 2022年4月18日
Arxiv
25+阅读 · 2021年3月20日
Arxiv
10+阅读 · 2018年2月17日
小贴士
相关主题
相关VIP内容
《5G 毫米波赋能 8K 视频制作》未来移动通信论坛
专知会员服务
11+阅读 · 2022年4月15日
专知会员服务
31+阅读 · 2021年7月25日
专知会员服务
36+阅读 · 2021年7月17日
专知会员服务
32+阅读 · 2021年7月1日
专知会员服务
31+阅读 · 2021年5月7日
MIT《图神经网络的任务结构与泛化》,22页ppt
专知会员服务
23+阅读 · 2021年2月28日
专知会员服务
84+阅读 · 2020年12月11日
专知会员服务
45+阅读 · 2020年11月13日
【GitHub实战】Pytorch实现的小样本逼真的视频到视频转换
专知会员服务
35+阅读 · 2019年12月15日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员