项目名称: 点载荷对应变硅晶体管载流子迁移率增强机理及结构优化设计

项目编号: No.11272049

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 数理科学和化学

项目作者: 魏雪霞

作者单位: 北京理工大学

项目金额: 86万元

中文摘要: 通过应变调控半导体硅及其它量子结构材料光电性质是目前国际研究热点问题。应变硅技术已经成为新一代微电子和光电子技术发展的一个重要趋势而被称为应变工程。其本质是应变会显著增强晶体管载流子迁移率, 从而显著提高器件性能。目前大部分研究是通过外延晶格失配技术产生应变,而局限性是产生的应变较小,工艺复杂且造价昂贵。此项目提出采用点载荷及弹性结构优化设计在晶体管应变硅沟道中产生较大应变,以点载荷、晶体管及应变硅沟道不均匀微结构变形和应变硅量子化电子结构及其载流子迁移率之间的内在关联为主线,致力于应变硅载流子迁移率增强机理的理论与实验研究。不仅采用弹性力学研究应变硅材料微结构形变演化过程及强度,而且应用量子力学理论和能带理论进一步深入研究不均匀应变场对量子化电子结构影响和载流子迁移率增强机理。寻找一套通过点载荷和弹性结构优化调控硅器件光电性质的新概念设计方法,可为新型应变硅器件设计提供理论和实验基础。

中文关键词: 应变硅;点载荷;解析解;结构优化设计;

英文摘要: It is a hot research topic to use strain technology to modify the optical and electrical properties of semiconductor silicon and othe quantum structural materials. Strained silicon technology, which has become an very important trend in the development of new generation of microelectronics and photonics technology, has been thus called as strain engineering. Its essence is that strain significantly enhance the carrier mobility of Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET), thereby it drastically improve the performance of the electric device. Most of the previous researches employed lattice mismatch technology to induce strain in silicon, but with limitations of small strain. Its process is complex and expensive. This project proposes to apply the point loads on elastic structure together with optimization design to induce larger strain in the silicon channel of the MOSFET, and to do theoretical and experimental study on carrier mobility enhancement mechanism of the strained silicon. The method is mainly following the natural connections among the point loads, the non-uniform deformation of strained silicon channel of the MOSFET, the quantum electronic structure and charge carrier mobility. Not only the theory of elasticity is employed to study the microstructure deformation evolution process an

英文关键词: Strained Silicon;Point Loads;Analytical solutions;Structural Design;

成为VIP会员查看完整内容
0

相关内容

【博士论文】分形计算系统
专知会员服务
33+阅读 · 2021年12月9日
专知会员服务
54+阅读 · 2021年9月18日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
32+阅读 · 2021年7月27日
专知会员服务
41+阅读 · 2021年6月2日
专知会员服务
31+阅读 · 2021年5月7日
【博士论文】解耦合的类脑计算系统栈设计
专知会员服务
30+阅读 · 2020年12月14日
专知会员服务
21+阅读 · 2020年9月14日
你的哪类电子产品换新频率最高?
ZEALER订阅号
0+阅读 · 2022年1月11日
已删除
将门创投
11+阅读 · 2019年7月4日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Disentangled Information Bottleneck
Arxiv
12+阅读 · 2020年12月22日
Adversarial Mutual Information for Text Generation
Arxiv
13+阅读 · 2020年6月30日
Arxiv
11+阅读 · 2018年1月11日
小贴士
相关主题
相关VIP内容
【博士论文】分形计算系统
专知会员服务
33+阅读 · 2021年12月9日
专知会员服务
54+阅读 · 2021年9月18日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
32+阅读 · 2021年7月27日
专知会员服务
41+阅读 · 2021年6月2日
专知会员服务
31+阅读 · 2021年5月7日
【博士论文】解耦合的类脑计算系统栈设计
专知会员服务
30+阅读 · 2020年12月14日
专知会员服务
21+阅读 · 2020年9月14日
相关资讯
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
微信扫码咨询专知VIP会员