项目名称: 微纳米尺度材料力学性能测量系统研究

项目编号: No.11227202

项目类型: 专项基金项目

立项/批准年度: 2013

项目学科: 数理科学和化学

项目作者: 李喜德

作者单位: 清华大学

项目金额: 290万元

中文摘要: 微纳尺度材料具有优越的力学性能被广泛地用于新结构和器件中,但其力学性能和体材料有巨大的差别,这对结构和器件的设计以及可靠性评估造成极大困难。传统的测量系统无法适应如此小尺寸的材料检测,因此研发微尺度下材料力学性能测量系统成为基础研究和工业应用的迫切课题。项目将研制一套跨数百微米到数十纳米尺度的材料力学性能测量系统,具有拉、压、弯曲、振动(疲劳)以及力电耦合等加载模式,在扫描电子显微镜中完成力学性能检测,并兼顾原子力和光学显微平台。检测系统载荷范围为500毫牛-100皮牛,灵敏度10皮牛;位移范围为5纳米-250微米,分辨5纳米;试件测试区最大长度500微米。在此基础上以纳米线、低维薄膜、石墨烯等复合材料为对象,研究微纳米尺度下材料强度及其变形机理;开展基体、夹杂及界面相等的跨尺度力学性能检测,以验证系统的可靠性和有效性;同时开展系统和试样耦合相互作用研究,探讨检测系统在纳尺度检测中的影响。

中文关键词: 力学性能;材料力学测量系统;微纳米尺度;微力传感器;低维或一维材料

英文摘要: Micro/nano scale materials possess superior mechanical properties and have been widely used in new structures and devices. However, there is a great difference of mechanical properties between the materials at micro/nano scale and their bulk counterparts, which causes great difficulties in the design and reliability assessment of micro/nano structures and devices. Traditional measurement systems can not adapt to such a small size tested materials. Thus, development of micro/nano scale measurement system has become an urgent issue in basic research and industrial applications. The project will develop a measurement system that the characteristic length of tested objects is from several hundreds micrometers to several tens nanometers. The test system has the loading configurations of tension, compression, bend, vibration (fatigue), and electromechanical coupling loading mode, operates at the scanning electron microscope (SEM) stage, as well as the atomic force (AFM) and optical microscopy (OM) platforms. The test system’s parameters are load range from 500 mN to 100 pN with sensitivity of 10 pN, displacement range from 5 nm to 250 micrometers with resolution of 5 nm; and the maximum gauge length of 500 micrometers, respectively. Based on the developed system, the materials strength and their deformation mechanism

英文关键词: Mechanical properties;material testing system;micro/nano scale;micro-force sensor;low-dimension or 1-D materials

成为VIP会员查看完整内容
0

相关内容

面向任务型的对话系统研究进展
专知会员服务
56+阅读 · 2021年11月17日
NeurIPS 2021 | 微观特征混合进行宏观时间序列预测
专知会员服务
39+阅读 · 2021年11月12日
专知会员服务
41+阅读 · 2021年9月7日
专知会员服务
57+阅读 · 2021年5月11日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
65+阅读 · 2021年1月28日
专知会员服务
44+阅读 · 2020年11月13日
专知会员服务
28+阅读 · 2020年8月8日
机器学习在材料科学中的应用综述,21页pdf
专知会员服务
47+阅读 · 2019年9月24日
最便宜的 48 英寸 OLED 显示器?KTC G48P5 体验
ZEALER订阅号
0+阅读 · 2022年1月13日
工程实践 | CUDA优化之LayerNorm性能优化实践
极市平台
0+阅读 · 2022年1月10日
仅需几天,简约神经网络更快地发现物理定律
机器之心
0+阅读 · 2021年12月25日
招聘平面设计实习生
微软研究院AI头条
0+阅读 · 2021年5月20日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年5月14日
Arxiv
0+阅读 · 2022年5月13日
Arxiv
0+阅读 · 2022年5月11日
Arxiv
20+阅读 · 2021年9月21日
Arxiv
19+阅读 · 2021年6月15日
Arxiv
16+阅读 · 2021年1月27日
小贴士
相关VIP内容
面向任务型的对话系统研究进展
专知会员服务
56+阅读 · 2021年11月17日
NeurIPS 2021 | 微观特征混合进行宏观时间序列预测
专知会员服务
39+阅读 · 2021年11月12日
专知会员服务
41+阅读 · 2021年9月7日
专知会员服务
57+阅读 · 2021年5月11日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
65+阅读 · 2021年1月28日
专知会员服务
44+阅读 · 2020年11月13日
专知会员服务
28+阅读 · 2020年8月8日
机器学习在材料科学中的应用综述,21页pdf
专知会员服务
47+阅读 · 2019年9月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
相关论文
Arxiv
0+阅读 · 2022年5月14日
Arxiv
0+阅读 · 2022年5月13日
Arxiv
0+阅读 · 2022年5月11日
Arxiv
20+阅读 · 2021年9月21日
Arxiv
19+阅读 · 2021年6月15日
Arxiv
16+阅读 · 2021年1月27日
微信扫码咨询专知VIP会员