项目名称: 羊毛纤维微观结构特征对毛织物热湿传导性能的影响机制

项目编号: No.51203114

项目类型: 青年科学基金项目

立项/批准年度: 2013

项目学科: 有机高分子材料学科

项目作者: 范杰

作者单位: 天津工业大学

项目金额: 25万元

中文摘要: 羊毛纤维被誉为"会呼吸的天然纤维",其织物具有卓越的保暖和吸湿排汗特性,从古至今始终受到世人的青睐。本课题基于羊毛织物具有原纤→纤维→纱线→织物的多层次化复杂结构,研究羊毛纤维微观结构对织物对毛织物热湿传导机理的影响机制。由于羊毛纤维内部存在复杂的多级原纤化结构,而其所缔造的羊毛纱线和织物也呈现出多层次化的结构特征,故本课题拟采用分形学的研究方法对羊毛织物内部的各层次结构进行表征,并将纤维、纱线、织物的内部几何结构参数逐级复合,建立从织物最微观结构(纤维中纳米尺度的原纤)出发拓展至其宏观多孔结构的多尺度热湿传导模型,从本质上揭示羊毛纤维微观结构对其织物的热湿传导性能的影响机制。本课题的研究,能够从理论和实验上阐释羊毛织物卓越保暖排汗特性的本质原因,为进一步设计和开发仿生结构纤维及功能性纺织服装材料提供理论依据和实验基础。

中文关键词: 羊毛;织物;多尺度;分形;热质传导

英文摘要: Wool fiber is honoured as 'breathing fiber', and woolen fabric exhibits an excellent heat retention and moisture absorption propertie. As a result, woolen fabric is popular with consumers. In this research, we will investigate the mechanism for heat and moisture transfer of woolen fabric by the influence of microstructure characteristic of wool fiber, and this research is based on the complex, multilevel structure of woolen fabric from microfibrils to fiber, to yarn,and finally to fabric. Since wool fiber is composed of multiscale fibrils, thus the woolen fabric constituted by wool fiber exhibits an multilevel construction as well. Fractal method will be imployed to express each level of inner structure in woolen fabric, and the geometric parameters of each level of inner structure in woolen fabric will be composited gradually to establish a multiscall heat and moisture tranfer model. This model is established based on the multilevel structure of woolen fabric, from the most microstructure (the nano scale structure of wool fiber) to the macroscope porous structure of the fabric. Such a model will reveal the mechanism for heat and moisture transfer of woolen fabric by the influence of microstructure characteristic of wool fiber. This research project would explain the essential reason for why wool fiber exhibits

英文关键词: wool;fabric;multiscale;fractal;heat and mass tranfer

成为VIP会员查看完整内容
0

相关内容

信息物理融合系统 (CPS)研究综述
专知会员服务
45+阅读 · 2022年3月14日
专知会员服务
54+阅读 · 2021年10月4日
专知会员服务
24+阅读 · 2021年8月22日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
30+阅读 · 2021年3月7日
专知会员服务
28+阅读 · 2021年2月26日
专知会员服务
78+阅读 · 2020年8月4日
【学科交叉】抗生素发现的深度学习方法
专知会员服务
24+阅读 · 2020年2月23日
一文读懂 Pytorch 中的 Tensor View 机制
极市平台
0+阅读 · 2022年1月30日
SMP 2021 前沿讲习班
哈工大SCIR
0+阅读 · 2021年7月12日
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
【材料课堂】EBSD晶体学织构基础及数据处理
材料科学与工程
34+阅读 · 2018年7月14日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月17日
Talking-Heads Attention
Arxiv
15+阅读 · 2020年3月5日
小贴士
相关主题
相关VIP内容
信息物理融合系统 (CPS)研究综述
专知会员服务
45+阅读 · 2022年3月14日
专知会员服务
54+阅读 · 2021年10月4日
专知会员服务
24+阅读 · 2021年8月22日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
30+阅读 · 2021年3月7日
专知会员服务
28+阅读 · 2021年2月26日
专知会员服务
78+阅读 · 2020年8月4日
【学科交叉】抗生素发现的深度学习方法
专知会员服务
24+阅读 · 2020年2月23日
相关资讯
一文读懂 Pytorch 中的 Tensor View 机制
极市平台
0+阅读 · 2022年1月30日
SMP 2021 前沿讲习班
哈工大SCIR
0+阅读 · 2021年7月12日
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
【材料课堂】EBSD晶体学织构基础及数据处理
材料科学与工程
34+阅读 · 2018年7月14日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员