Communications in the terahertz band (THz) (0.1--10~THz) have been regarded as a promising technology for future 6G and beyond wireless systems, to overcome the challenges of evergrowing wireless data traffic and crowded spectrum. As the frequency increases from the microwave band to the THz band, new spectrum features pose unprecedented challenges to wireless communication system design. The molecular absorption effect is one of the new THz spectrum properties, which enlarges the path loss and noise at specific frequencies. This brings in a double-edged sword for THz wireless communication systems. On one hand, from the data rate viewpoint, molecular absorption is detrimental, since it mitigates the received signal power and degrades the channel capacity. On the other hand, it is worth noticing that for wireless security and covertness, the molecular absorption effect can be utilized to safeguard THz communications among users. In this paper, the features of the molecular absorption effect and their impact on the THz system design are analyzed under various scenarios, with the ultimate goal of providing guidelines to how better exploit this unique THz phenomenon. Specifically, since the molecular absorption greatly depends on the propagation medium, different communication scenarios consisting of various media are discussed, including terrestrial, air and space, sea surface and nano-scale communications. Furthermore, two novel molecular absorption enlightened secure and covert communication schemes are presented, where the molecular absorption effect is utilized as the key and unique feature to boost security and covertness.


翻译:特拉赫茨波段(THz)中的通信(0.1-10-10~THz)被认为是未来6G和无线系统之外的有希望的技术,可以克服无线数据传输和拥挤频谱不断增加的挑战。随着从微波波段到THz波段的频率增加,新的频谱特征对无线通信系统的设计提出了前所未有的挑战。分子吸收效应是新的THz频谱特性之一,它扩大了特定频率的路径丢失和噪音。这为THz无线通信系统带来了双刃剑。一方面,从数据速率角度看,分子吸收有害于未来6G系统,因为它减轻了接收的信号功率,削弱了频道能力。另一方面,随着微波波段从微波波增加至Thz频段,新的频谱特性对无线通信系统设计的影响是前所未有的。具体而言,分子吸收作用和分子分子分子分子吸收作用是独特的THThz通信系统。具体地说,因为分子的覆盖面和分子分子间通信模式在很大程度上取决于地面通信的深度和深层次,因此,分子吸收是不同的空间的深度和深层次,因为分子吸收方式是利用了各种媒介的媒介。

0
下载
关闭预览

相关内容

系统设计是新系统的物理设计阶段。根据系统分析阶段所确定的新系统的逻辑模型、功能要求,在用户提供的环境条件下,设计出一个能在计算机网络环境上实施的方案,即建立新系统的物理模型。
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
60+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Attacking (and defending) the Maritime Radar System
Arxiv
0+阅读 · 2022年7月12日
Arxiv
0+阅读 · 2022年7月8日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
60+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员