项目名称: 含锂石榴石薄膜材料的制备和离子传导研究

项目编号: No.11304198

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 数理科学和化学

项目作者: 段华南

作者单位: 上海交通大学

项目金额: 28万元

中文摘要: 研发一种安全、稳定、高离子传导率的固态锂离子电解质是开发全固态锂离子电池的关键与难点。近年来含锂石榴石以其较高的室温离子传导率(~0.0003 S/cm)成为固态锂离子电解质的热门备选材料。本项目针对此离子传导率仍低于业界公认的实用值0.01 S/cm的问题,提出引入薄膜材料的策略。基于前期在多元氧化物离子薄膜导体上的研究基础,我们计划采用RF磁控溅射沉积技术制备含锂石榴石薄膜,通过考察沉积条件和后续处理对薄膜材料的材料学特性如晶体的有序/无序转变、化学计量、晶粒尺寸、晶界杂质和生长取向的影响,以制得致密、形稳、缺陷少的薄膜材料。同时通过采用电化学交流阻抗法测量其离子传导性能,揭示含锂石榴石薄膜材料中"空间电荷"效应和晶界杂质对锂离子传导过程的影响机理。本研究可以加深对薄膜离子导体中离子传导机制的理解,可研发含锂石榴石薄膜材料的制备流程,为研制新型快速锂离子电解质薄膜提供理论和实验依据。

中文关键词: 石榴石型;锂离子固体电解质;离子传导率;空气稳定性;锂硫电池

英文摘要: A safe, stable and ionically fast solid electrolyte material has become the key and bottleneck to develop all-solid-state lithium-ion batteries. In recent years, lithium garnets as solid-state lithium-ion electrolyte has attracted much attention thanks to the relatively high room-temperature ionic conductivity (~0.0003 S/cm). However, this conductivity value is still well below the widely accepted practical value for lithium-ion electrolyte, i.e. 0.01 S/cm. Our strategy to address this issue is to introduce thin-film materials. Based on our experience in complex oxide thin-film ion conductors, we propose 1) to fabricate thin-film lithium garnets through RF magnetron sputtering deposition, investigating the effect of sputtering parameters on the material features (order/disorder transfer, stoichiometry, grain size, grain boundary impurities, and texture) of the thin film; 2) to study the ionic property of thin-film lithium garnets and shed lights on the influence of "space charge" effect and interface impurities on ionic conductance. This work will develop a fabrication process for thin-film lithium garnets, deepen the understanding of ion transport in thin-film ion conductors and provide experimental and theoretical insights to develop novel fast thin-film lithium-ion electrolyte.

英文关键词: garnet;solid lithium-ion electrolyte;ionic conductivity;air stability;Li-S batteries

成为VIP会员查看完整内容
0

相关内容

《华为云数据库在金融行业的创新与探索》华为26页PPT
专知会员服务
14+阅读 · 2022年3月23日
深度神经网络FPGA设计进展、实现与展望
专知会员服务
35+阅读 · 2022年3月21日
专知会员服务
43+阅读 · 2021年9月7日
边缘机器学习,21页ppt
专知会员服务
83+阅读 · 2021年6月21日
专知会员服务
45+阅读 · 2021年5月24日
专知会员服务
33+阅读 · 2021年5月7日
【经典书】信息论原理,774页pdf
专知会员服务
257+阅读 · 2021年3月22日
专知会员服务
22+阅读 · 2020年9月14日
全固态电池领域,小公司的加速度——恩力动力
创业邦杂志
0+阅读 · 2022年2月25日
我在快手,从0到1打造“快品牌”
人人都是产品经理
1+阅读 · 2022年1月26日
你的哪类电子产品换新频率最高?
ZEALER订阅号
0+阅读 · 2022年1月11日
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
小芯片大安全:数字隔离器的前世今生
中国科学院自动化研究所
0+阅读 · 2021年3月16日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
39+阅读 · 2019年4月12日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月17日
GitTables: A Large-Scale Corpus of Relational Tables
Arxiv
0+阅读 · 2022年4月15日
Arxiv
49+阅读 · 2021年9月11日
Arxiv
19+阅读 · 2021年6月15日
Knowledge Representation Learning: A Quantitative Review
小贴士
相关主题
相关VIP内容
《华为云数据库在金融行业的创新与探索》华为26页PPT
专知会员服务
14+阅读 · 2022年3月23日
深度神经网络FPGA设计进展、实现与展望
专知会员服务
35+阅读 · 2022年3月21日
专知会员服务
43+阅读 · 2021年9月7日
边缘机器学习,21页ppt
专知会员服务
83+阅读 · 2021年6月21日
专知会员服务
45+阅读 · 2021年5月24日
专知会员服务
33+阅读 · 2021年5月7日
【经典书】信息论原理,774页pdf
专知会员服务
257+阅读 · 2021年3月22日
专知会员服务
22+阅读 · 2020年9月14日
相关资讯
全固态电池领域,小公司的加速度——恩力动力
创业邦杂志
0+阅读 · 2022年2月25日
我在快手,从0到1打造“快品牌”
人人都是产品经理
1+阅读 · 2022年1月26日
你的哪类电子产品换新频率最高?
ZEALER订阅号
0+阅读 · 2022年1月11日
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
小芯片大安全:数字隔离器的前世今生
中国科学院自动化研究所
0+阅读 · 2021年3月16日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
39+阅读 · 2019年4月12日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
微信扫码咨询专知VIP会员