项目名称: 高场内插多场耦合特性及性能退化机理研究

项目编号: No.51477167

项目类型: 面上项目

立项/批准年度: 2015

项目学科: 电工技术

项目作者: 王秋良

作者单位: 中国科学院电工研究所

项目金额: 95万元

中文摘要: 研制高磁场(>25T)超导磁体需要高场内插线圈。由于REBCO高温超导线材在高场下优良电流传输特性及具有承受较高拉伸应力特征,已成为目前超高场内插首选线材。最近实验研究发现基于传统的浸渍与制备工艺研制的高场内插,在高磁场下运行,其载流性能急剧退化,并出现反常锻炼效应。本项目重点研究REBCO高磁场内插磁体在超过25T中心场时的多物理场耦合特性及临界电流退化的机理,基于REBCO带材结构特征、本征稳定性、屏蔽电流和复杂结构应力-应变分布特征,以多尺度均匀化理论,微观观测和低温测试结合,揭示其多场耦合产生临界参量退化本征特性,辨明内插电流退化和不稳定性产生机理,探明不同结构应力与电磁结构参数的变化规律,形成高应力-应变内插设计准则,在此基础提出设计理论与方法、制备工艺和稳定化及分散应力结构,以解决超高场超导磁体系统应用关键的科学与技术问题,为极端条件大科学设施研制提供理论与技术基础。

中文关键词: 超导磁体;稳定性;电磁特性;数值模拟;高温超导带材

英文摘要: The development of a high magnetic field superconducting magnet (>25 T) require a high field HTS insert. Since the REBCO HTS tape with the excellent current transpotation characteristics to withstand high tensile stress under the high field, it has become the first choice conductor for ultra-high-field insert. Recently, the experimental results have found a sharp degradation in the performance of their critical parameters, and abnormal traning effect on the basis of the conventional impregnation technique to build the high field insert operated at high magnetic field. This project focuses on the characteristics of multi-physics coupling characteristics and the mechanism of critical current degradation in the REBCO tape and insert during the operating magnetic field over than 25T. Based on the structure, intrinsic stability, and the complex structure generation of the shield current, stress-strain distribution features of REBCO, the multi-scale homogenization theory and technology are employed to reveal its multiphysics field coupling to result in the current degradation. The rules of the current degradation and instability generated in the ultra-high-field insert are studied. It will reveal the function relationship among the electromagnetic parameters and structure arguements under the different structural stress and electromagnetic variation of structural parameters, the displacement of high stress - strain interpolation within design criteria. The design theory and methods, fabrication technique, dynamic stabilized method and dispersion stress structure are proposed to solve key scientific problem which are related to the insert for the ultrahigh applications. Also, it can provide theoretical and technical foundation for the development of the extreme conditions of big science facilities.

英文关键词: superconducting magnet;stability;electromagnetic characteristics;numerical simulation;HTS tape

成为VIP会员查看完整内容
0

相关内容

阿里达摩院十大科技趋势报告,31页pdf
专知会员服务
67+阅读 · 2021年12月29日
【哈佛大学】深度学习理论实证探究
专知会员服务
43+阅读 · 2021年11月1日
【CMU博士论文】开放世界目标检测与跟踪,168页pdf
专知会员服务
59+阅读 · 2021年6月14日
【经典书】数理统计学,142页pdf
专知会员服务
97+阅读 · 2021年3月25日
最新《非凸优化理论》进展书册,79页pdf
专知会员服务
109+阅读 · 2020年12月18日
【博士论文】解耦合的类脑计算系统栈设计
专知会员服务
31+阅读 · 2020年12月14日
专知会员服务
29+阅读 · 2020年8月8日
基于改进卷积神经网络的短文本分类模型
专知会员服务
26+阅读 · 2020年7月22日
模型优化基础,Sayak Paul,67页ppt
专知会员服务
76+阅读 · 2020年6月8日
JDK 18 最新动态和 JDK 19 新特性预测
InfoQ
0+阅读 · 2022年3月24日
ToB 企业云原生持续交付的探索实践
InfoQ
0+阅读 · 2022年1月20日
Chrome vs Firefox 性能之争,到底哪家强?
CSDN
0+阅读 · 2022年1月11日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
46+阅读 · 2021年10月4日
Heterogeneous Graph Transformer
Arxiv
27+阅读 · 2020年3月3日
Arxiv
27+阅读 · 2018年4月12日
小贴士
相关主题
相关VIP内容
阿里达摩院十大科技趋势报告,31页pdf
专知会员服务
67+阅读 · 2021年12月29日
【哈佛大学】深度学习理论实证探究
专知会员服务
43+阅读 · 2021年11月1日
【CMU博士论文】开放世界目标检测与跟踪,168页pdf
专知会员服务
59+阅读 · 2021年6月14日
【经典书】数理统计学,142页pdf
专知会员服务
97+阅读 · 2021年3月25日
最新《非凸优化理论》进展书册,79页pdf
专知会员服务
109+阅读 · 2020年12月18日
【博士论文】解耦合的类脑计算系统栈设计
专知会员服务
31+阅读 · 2020年12月14日
专知会员服务
29+阅读 · 2020年8月8日
基于改进卷积神经网络的短文本分类模型
专知会员服务
26+阅读 · 2020年7月22日
模型优化基础,Sayak Paul,67页ppt
专知会员服务
76+阅读 · 2020年6月8日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
相关论文
微信扫码咨询专知VIP会员